精英家教网 > 高中数学 > 题目详情
已知复数z=(m2-m-6)+(m2-2m-15)i,m∈R
(1)当m=3时,求|z|;
(2)当m为何值时,z为纯虚数;
(3)若复数z在复平面上所对应的点在第四象限,求实数m的取值范围.
分析:(1)把m的值代入,整理后直接利用模的公式求解;
(2)由实部等于0且虚部不等于0联立方程组求解;
(3)由实部大于0且虚部小于0联立不等式组求解.
解答:解(1)当m=3时,z=(m2-m-6)+(m2-2m-15)i=-12i,
所以|z|=12;
(2)由
m2-m-6=0
m2-2m-15≠0
,解得m=-2或m=3,
所以当m=-2或m=3时z为纯虚数;
(3)由
m2-m-6>0
m2-2m-15<0
,解得-3<m<-2或3<m<5.
所以当-3<m<-2或3<m<5时z在复平面上所对应的点在第四象限.
点评:本题考查了复数的基本概念,考查了复数模的求法是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知复数z=(m2-2)+(m-1)i对应的点位于第二象限,则实数m的范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知复数z=(m2+5m+6)+(m2-2m-15)i,当实数m为何值时,
(1)z为实数;(2)z为虚数;(3)z为纯虚数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知复数z=(m2-1)+(m2-3m+2)i,求分别满足下列条件的实数m的值.
(1)z为纯虚数;
(2)z在复平面上的对应点在以(0,-3m)为圆心,
17
为半径的圆上.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知复数z=(m2+m-6)+(m2+m-2)i(m∈R)在复平面内所对应的点为A.
(1)若复数z+4m为纯虚数,求实数m的值;
(2)若点A在第二象限,求实数M的取值范围;
(3)求|z|的最小值及此时实数m的值.

查看答案和解析>>

同步练习册答案