精英家教网 > 高中数学 > 题目详情
11.已知二次函数f(x)=ax2+bx+c
(1)若a>b>c,且f(1)=0,是否存在实数m,使当f(m)=-a时,f(m+3)为正数?
(2)若-∞<x1<x2<+∞,f(x1)≠f(x2),且方程f(x)=$\frac{1}{2}$[f(x1)+f(x2)]有两个不等的实数根,求证:必有一实根在x1与x2之间.

分析 (1)由条件知方程的一根为1,另一根满足-2<x2<0.由于f(m)=-a<0,可知m∈(-2,1),从而m+3>1,根据函数y=f(x)在[1,+∞)上单调递增,可知(m+3)>0成立.;
(2)构造函数g(x)=f(x)-$\frac{1}{2}$[f(x1)+f(x2)],进而证明g(x1)g(x2)<0,由函数零点存在定理可得方程g(x)=0在(x1,x2)内有一根,故方程f(x)=$\frac{1}{2}$[f(x1)+f(x2)]必有一根属于(x1,x2).

解答 解:(1)因为f(1)=0,所以a+b+c=0,
又因为a>b>c,所以a>0,且c<0,
因此ac<0,
所以△=b2-4ac>0,
因此f(x)的图象与x轴有2个交点.
可知方程f(x)=0有两个不等的实数根,不妨设为x1和x2
因为f(1)=0,
所以f(x)=0的一根为x1=1,
因为x1+x2=-$\frac{b}{a}$,x1x2=$\frac{c}{a}$,
所以x2=-$\frac{b}{a}$-1=$\frac{c}{a}$,
因为a>b>c,a>0,且c<0,
所以-2<x2<0.
因为要求f(m)=-a<0,
所以m∈(x1,x2),
因此m∈(-2,1),则m+3>1,
因为函数y=f(x)在[1,+∞)上单调递增;
所以f(m+3)>f(1)=0成立.
(2)证明:构造函数g(x)=f(x)-$\frac{1}{2}$[f(x1)+f(x2)],
则g(x1)=f(x1)-$\frac{1}{2}$[f(x1)+f(x2)]=$\frac{1}{2}$[f(x1)-f(x2)],
g(x2)=f(x2)-$\frac{1}{2}$[f(x1)+f(x2)]=$\frac{1}{2}$[f(x2)-f(x1)],
于是g(x1)g(x2)=$\frac{1}{4}$[f(x1)-f(x2)][f(x2)-f(x1)]
=-$\frac{1}{4}$[f(x1)-f(x2)]2
因为f(x1)≠f(x2),
所以g(x1)g(x2)=-$\frac{1}{4}$[f(x1)-f(x2)]2<0,
所以方程g(x)=0在(x1,x2)内有一根,
即方程f(x)=$\frac{1}{2}$[f(x1)+f(x2)]必有一根属于(x1,x2).

点评 本题以二次函数为载体,考查方程根的探求,考查函数值的确定及函数的零点问题,有一定的综合性.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=x3+ax2+(a+6)x+1在R上递增,则实数a的取值范围是[-3,6].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知logax+logcx=2logbx,且x≠1,求证:c2=(ac)${\;}^{lo{g}_{a}b}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知正六边形ABCDEF,$\overrightarrow{AC}$=$\overrightarrow{a}$,$\overrightarrow{BD}$=$\overrightarrow{b}$,用$\overrightarrow{a}$,$\overrightarrow{b}$表示向量$\overrightarrow{DE}$,$\overrightarrow{AD}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.给出下列三个类比结论:
①若a,b,c,d∈R,复数a+bi=c+di,则a=c,b=d,类比推理出:若a,b,c,d∈Q,a+b$\sqrt{5}$=c+d$\sqrt{5}$,则a=c,b=d;
②已知直线a,b,c,若a∥b,b∥c,则a∥c,类比推理出,已知向量$\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}$,若$\overrightarrow{a}∥\overrightarrow{b}$,$\overrightarrow{b}∥\overrightarrow{c}$,则$\overrightarrow{a}∥\overrightarrow{c}$;
③同一平面内,a,b,c是三条互不相同的直线,若a∥b,b∥c,则a∥c,类比推理出:空间中,α,β,γ是三个互不相同的平面,若α∥β,β∥γ,则α∥γ.
其中正确结论的个数是①③.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.某研究机构从一所普通高中随机选取4名高三男生进行某项研究,其理解力x与记忆力y的数据统计如下表所示:
x681012
y2356
由表中数据可得回归直线方程$\widehat{y}$=0.7x+$\widehat{a}$,据此模型预测理解力为14的同学记忆力约为7.5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在建立两个变量y与x的回归模型中,分别选择了4个不同模型,模型1、2、3、4的R2分别为0.99、0.89、0.52、0.16,则其中拟合得最好得模型是(  )
A.模型1B.模型2C.模型3D.模型4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知a>b>0,则下列不等式中恒成立的有(  )个.
①a2+5ab>6b2;②$\frac{1}{a-b}$>$\frac{1}{b}$;③$\frac{a}{b}$>$\frac{a+1}{b+1}$;④$\frac{b}{a}$<$\frac{b+1}{a+1}$.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设a>b>0,则下列关系式成立的是(  )
A.aabb>(ab)${\;}^{\frac{a+b}{2}}$B.aabb<(ab)${\;}^{\frac{a+b}{2}}$
C.aabb=(ab)${\;}^{\frac{a+b}{2}}$D.aabb与(ab)${\;}^{\frac{a+b}{2}}$的大小不能确定

查看答案和解析>>

同步练习册答案