精英家教网 > 高中数学 > 题目详情

数学公式在区间[-1,2]上有反函数,则a的范围为是


  1. A.
    (-∞,+∞)
  2. B.
    [1,+∞)
  3. C.
    (-3,1)
  4. D.
    (-∞,-3]∪[1,+∞)
D
分析:函数有反函数,所以在区间上是单调函数,利用导数值符号不变,求出a的范围.
解答:因为在区间[-1,2]上有反函数,
所以f(x)在该区间[-1,2]上单调,
则f'(x)=x2-2x+a≥0在[-1,2]上恒成立,
得a≥1或在f'(x)=x2-2x+a≤0上恒成立,
得a≤-3.
故选D.
点评:本题考查反函数的知识,导数确定函数的单调性,考查计算能力,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
ax3+ax2-x+10
在区间[1,2]上不是单调函数,则a的范围为(  )
A、[
1
8
1
3
]
B、(
1
8
1
3
]
C、[
1
8
1
3
)
D、(
1
8
1
3
)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x4-4x3+ax2-1在区间[0,1]上单调递增,在区间[1,2]上单调递减.
(1)求a的值;
(2)若斜率为24的直线是曲线y=f(x)的切线,求此直线方程;
(3)是否存在实数b,使得函数g(x)=bx2-1的图象与函数f(x)的图象恰有2个不同交点?若存在,求出实数b的值;若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广州二模)已知函数f(x)=x2-2alnx (a∈且a≠0).
(1)若f(x)在定义域上为增函数,求实数a的取值范围;
(2)求函数f(x)在区间[1,2]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•温州二模)已知曲线C:f(x)=x3-ax+a,
(Ⅰ)若f(x)在区间[1,2]上是增函数,求实数a的取值范围;
(Ⅱ)过C外一点A(1,0)引C的两条切线,若它们的倾斜角互补,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•宝山区模拟)若使函数y=x2-ax+1在区间[1,2]上存在反函数,则实数a的取值范围
(-∞,2]∪[4,+∞)
(-∞,2]∪[4,+∞)

查看答案和解析>>

同步练习册答案