精英家教网 > 高中数学 > 题目详情

【题目】中,角所对的边分别为.已知.

(1)求

(2)若,求.

【答案】(1)22.

【解析】

试题分析:(1)首先利用正弦定理化已知条件等式中的边为角,然后利用两角和的正弦公式结合三角形内角和定理求得的值,从而求得角的大小2首先结合(1)利用余弦定理求得的关系式,然后根据三角形面积公式求得的值.

试题解析:(1)由正弦定理得:

2sinBcosB=sinAcosAcosB-sinBsin2AsinCcosA=sinAcos(AB)sinCcosA

=-sinAcosCsinCcosA=-sin(A+C)=-sinB,

sinB0,

cosB=-,B=. 6

(2)b2=a2+c22accosB,b=a,cosB=-

c2+ac6a2=0,解得c=2a, 10

由SABCacsinB=a22,得a=2. 12

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知,(其中).

(1)求

(2)试比较的大小,并用数学归纳法给出证明过程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知是上、下底边长为2和6,高为的等腰梯形,将它沿对称轴折叠,使二面角为直二面角.

(1)证明:

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-5:不等式选讲

已知函数.

1)当时,解不等式

2)若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,底面是边长为的菱形,.

(1)证明:平面

(2)若求二面角 的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面为线段上一点,的中点.

(1)证明:平面

(2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,角所对的边分别为.已知.

(1)求

(2)若的面积为周长为 ,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了研究教学方式对教学质量的影响,某高中数学老师分别用两种不同的教学方式对入学数学平均分数和优秀率都相同的甲、乙两个高一新班进行教学(勤奋程度和自觉性都一样).以下茎叶图为甲、乙两班(每班均为20人)学生的数学期末考试成绩

(1)学校规定:成绩不低于75分的为优秀.请画出下面的列联表

甲班

乙班

合计

优秀

不优秀

合计

(2)判断有多大把握认为“成绩优秀与教学方式有关”.

下面临界值表仅供参考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分16分)已知是虚数, 是实数.

(1)求为何值时, 有最小值,并求出|的最小值;

(2)设,求证: 为纯虚数.

查看答案和解析>>

同步练习册答案