精英家教网 > 高中数学 > 题目详情

已知函数
①当时,求曲线在点处的切线方程。
②求的单调区间

(I)
(II)得单调递增区间是,单调递减区间是

解析试题分析:(I)当时,
由于
所以曲线在点处的切线方程为
, 即
(II).
①当时,.
所以,在区间;在区间.
得单调递增区间是,单调递减区间是
② 当时,由,得
所以,在区间上,;在区间上,
得单调递增区间是,单调递减区间是.
③当时, ,故得单调递增区间是.
④当时,,得.
所以在区间,;在区间上,
得单调递增区间是,单调递减区间是
考点:本题主要考查导数计算及其几何意义,应用导数研究函数的单调性。
点评:典型题,在给定区间,导数值非负,函数是增函数,导数值为非正,函数为减函数。求极值的步骤:计算导数、求驻点、讨论驻点附近导数的正负、确定极值。切线的斜率为函数在切点的导数值。本题涉及到了对数函数,要特别注意函数定义域。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

是函数的一个极值点。
(1)求的关系式(用表示),并求的单调区间;
(2)设,若存在,使得成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)求函数的定义域;(6分)
(2)求函数上的值域.(6分)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,且对任意的实数都有成立.
(1)求实数的值;
(2)利用函数单调性的定义证明函数在区间上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=x|x-2|.
(1)写出f(x)的单调区间;     (2)解不等式f(x)<3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题12分) 已知为实数,
(1)若,求的单调区间;
(2)若,求在[-2,2] 上的最大值和最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求函数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数
(1)判断函数的奇偶性;
(2)若在区间是增函数,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题共10分)
已知函数
(1)解关于的不等式
(2)若函数的图象恒在函数图象的上方(没有公共点),求的取值范围。

查看答案和解析>>

同步练习册答案