精英家教网 > 高中数学 > 题目详情

【题目】将函数f(x)=sin2x的图象向右平移φ(0<φ< )个单位后得到函数g(x)的图象.若对满足|f(x1)﹣g(x2)|=2的x1、x2 , 有|x1﹣x2|min= ,则φ=(
A.
B.
C.
D.

【答案】D
【解析】解:因为将函数f(x)=sin2x的周期为π,函数的图象向右平移φ(0<φ< )个单位后得到函数g(x)的图象.若对满足|f(x1)﹣g(x2)|=2的可知,两个函数的最大值与最小值的差为2,有|x1﹣x2|min=
不妨x1= ,x2= ,即g(x)在x2= ,取得最小值,sin(2× ﹣2φ)=﹣1,此时φ=- ,不合题意,
x1= ,x2= ,即g(x)在x2= ,取得最大值,sin(2× ﹣2φ)=1,此时φ= ,满足题意.
故选:D.
利用三角函数的最值,求出自变量x1 , x2的值,然后判断选项即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知命题p:对数有意义;命题q:实数t满足不等式.

(Ⅰ)若命题p为真,求实数的取值范围;

(Ⅱ)若命题p是命题q的充分不必要条件,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题:若关于的方程无实数根,则;命题:若关于的方程有两个不相等的正实数根,则.

(1)写出命题的否命题,并判断命题的真假;

(2)判断命题“”的真假,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】阅读如图所示的程序框图,解答下列问题:

(1)求输入的的值分别为时,输出的的值;

(2)根据程序框图,写出函数)的解析式;并求当关于的方程有三个互不相等的实数解时,实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一网站营销部为统计某市网友2017年12月12日在某网店的网购情况,随机抽查了该市60名网友在该网店的网购金额情况,如下表:

若将当日网购金额不小于2千元的网友称为“网购达人”,网购金额小于2千元的网友称为“网购探者”.已知“网购达人”与“网购探者”人数的比例为2:3.

(1)确定的值,并补全频率分布直方图;

(2)试根据频率分布直方图估算这60名网友当日在该网店网购金额的平均数和中位数;若平均数和中位数至少有一个不低于2千元,则该网店当日被评为“皇冠店”,试判断该网店当日能否被评为“皇冠店”.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若关于的不等式恰好有4个整数解,则实数的取值范围是(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥 底面底面为正方形 分别是的中点.

(Ⅰ)求证:

(Ⅱ)求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】张师傅欲将一球形的石材工件削砍加工成一圆柱形的新工件,已知原球形工件的半径为,则张师傅的材料利用率的最大值等于(注:材料利用率=)( )

A. B. C. D.

【答案】C

【解析】设球半径为R,圆柱的体积为时圆柱的体积最大为 ,因此材料利用率= ,选C.

点睛:空间几何体与球接、切问题的求解方法

求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.

型】单选题
束】
12

【题目】已知抛物线 在点处的切线与曲线 相切,若动直线分别与曲线相交于两点,则的最小值为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,a,b,c分别为角A,B,C的对边.若acosB=3,bcosA=l,且A﹣B=
(1)求边c的长;
(2)求角B的大小.

查看答案和解析>>

同步练习册答案