精英家教网 > 高中数学 > 题目详情
18.若直线l经过A(2,1),B(1,-m2)(m∈R)两点,则直线l的倾斜角α的取值范围是(  )
A.0≤α≤$\frac{π}{4}$B.$\frac{π}{2}$<α<πC.$\frac{π}{4}$≤α<$\frac{π}{2}$D.$\frac{π}{2}$<α≤$\frac{3π}{4}$

分析 根据题意,由直线过两点的坐标可得直线的斜率k,分析可得斜率k的范围,结合直线的斜率k与倾斜角的关系可得tanα=k≥1,又由倾斜角的范围,分析可得答案.

解答 解:根据题意,直线l经过A(2,1),B(1,-m2),
则直线l的斜率k=$\frac{1+{m}^{2}}{2-1}$=1+m2
又由m∈R,则k=1+m2≥1,
则有tanα=k≥1,
又由0≤α<π,
则$\frac{π}{4}$≤α<$\frac{π}{2}$;
故选:C.

点评 本题考查直线的斜率、倾斜角的计算,关键是求出斜率的范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.直线x+y-1=0与直线x-2y-4=0的交点坐标为(  )
A.(2,1)B.(2,-1)C.(-1,2)D.(-1,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图所示,该几何体是一个由直三棱柱ADE-BCF和一个正四棱锥P-ABCD组合而成,AD⊥AF,AE=AD=2
(1)证明:平面PAD⊥平面ABFE;
(2)若正四棱锥P-ABCD的体积是三棱锥P-ABF体积的4倍,求正四棱锥P-ABCD的高.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图所示,在直三棱柱ABC-A1B1C1中,AB=AC=5,BB1=BC=8,D是AA1的中点
(1)求证:平面BDC1⊥平面BB1C1C
(2)求四棱锥B-ACC1D的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数$y=\sqrt{2x-4}+lg(5-x)$的定义域为A,且B={x|x>4}.
(1)求集合A;
(2)求A∪(∁UB).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.直线l过点A(1,1),且l在y轴上的截距的取值范围为(0,2),则直线l的斜率的取值范围为(-1,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.圆心在直线$y=\frac{1}{3}x$上的圆C与y轴的正半轴相切,圆C截x轴所得的弦长为$4\sqrt{2}$,则圆C的标准方程为(  )
A.(x-3)2+(y-1)2=9B.(x+3)2+(y+1)2=9C.${({x-4})^2}+{({y-\frac{4}{3}})^2}=16$D.(x-6)2+(y-2)2=9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,内角A,B,C对边的边长分别a,b,c,f(x)=2sinxcos(x+A)+sin(B+C)(x∈R),函数f(x)的图象关于点$({\frac{π}{3},0})$对称.
(I)求A;
(II)若b=6,△ABC的面积为$6\sqrt{3}$,求$\overrightarrow{AC}•\overrightarrow{CB}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.关于x的方程($\frac{1}{3}$)|x|+a-1=0有解,则a的取值范围是(  )
A.0≤a<1B.-1<a≤0C.a≥1D.a>0

查看答案和解析>>

同步练习册答案