精英家教网 > 高中数学 > 题目详情

已知双曲线的方程为,过左焦点F1作斜率为的直线交双曲线的右支于点P,且轴平分线段F1P,则双曲线的离心率是(    )

A.             B.          C.           D.

 

【答案】

B

【解析】

试题分析:依题意知过左焦点且斜率为的直线为,与轴交点为,因为轴平分线段F1P,所以点P坐标为,此点在双曲线上,代入双曲线方程得代入可以求得双曲线的离心率为.

考点:本小题主要考查双曲线的简单几何性质.

点评:本题考查了双曲线的性质以及与直线的关系,关键是用含有c的式子表示出点p的坐标,属于中档题.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线的方程为
x2
a2
-
y2
b2
=1(a>0,b>0)
,过左焦点F1作斜率为
3
3
的直线交双曲线的右支于点P,且y轴平分线段F1P,则双曲线的离心率是(  )
A、
2
B、
5
+1
C、
3
D、2+
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线的方程为16x2-9y2=144.
(1)求双曲线的焦点坐标、离心率和准线方程;
(2)求以双曲线的中心为顶点,左顶点为焦点的抛物线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•济南三模)已知双曲线的方程为
x2
a2
-
y2
b2
=1
(a>0,b>0),双曲线的一个焦点到一条渐近线的距离为
5
3
c
(c为双曲线的半焦距长),则双曲线的离心率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宝山区二模)已知双曲线的方程为
x23
-y2=1
,则此双曲线的焦点到渐近线的距离为
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•昌平区二模)已知双曲线的方程为
x2
4
-y2=1
,则其渐近线的方程为
y=±
1
2
x
y=±
1
2
x
,若抛物线y2=2px的焦点与双曲线的右焦点重合,则p=
2
5
2
5

查看答案和解析>>

同步练习册答案