精英家教网 > 高中数学 > 题目详情

【题目】已知以坐标原点为圆心的圆与抛物线相交于不同的两点 ,与抛物线的准线相交于不同的两点 ,且.

(1)求抛物线的方程;

(2)若不经过坐标原点的直线与抛物线相交于不同的两点 ,且满足.证明直线过定点,并求出点的坐标.

【答案】(1) 抛物线的方程为;(2) 直线过定点,证明见解析.

【解析】试题分析:1)由,得两点所在的直线方程为,进而根据长度求得

(2)设直线的方程为 与抛物线联立得,由,进而利用韦达定理求解即可.

试题解析:

(1)由已知, ,则两点所在的直线方程为

,故

抛物线的方程为.

(2)由题意,直线不与轴垂直,设直线的方程为

.

联立消去,得.

,∴

解得

,∴(此时

∴直线的方程为

故直线轴上一定点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图是一个几何体的平面展开图,其中四边形ABCD为正方形,△PDC, △PBC, △PAB, △PDA为全等的等边三角形,E、F分别为PA、PD的中点,在此几何体中,下列结论中错误的为 ( )

A. 平面BCD⊥平面PAD B. 直线BE与直线AF是异面直线

C. 直线BE与直线CF共面 D. 面PAD与面PBC的交线与BC平行

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 ,且
(1)求cos2θ与 的值;
(2)若 ,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线关于轴对称,顶点在坐标原点,直线经过抛物线的焦点.

(1)求抛物线的标准方程;

(2)若不经过坐标原点的直线与抛物线相交于不同的两点 ,且满足,证明直线轴上一定点,并求出点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲袋中有1只黑球,3只红球;乙袋中有2只黑球,1只红球.

(1)从甲袋中任取两球,求取出的两球颜色不相同的概率;

(2)从甲,乙两袋中各取一球,求取出的两球颜色相同的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一网站营销部为统计某市网友2017年12月12日在某网店的网购情况,随机抽查了该市60名网友在该网店的网购金额情况,如下表:

若将当日网购金额不小于2千元的网友称为“网购达人”,网购金额小于2千元的网友称为“网购探者”.已知“网购达人”与“网购探者”人数的比例为2:3.

(1)确定的值,并补全频率分布直方图;

(2)试根据频率分布直方图估算这60名网友当日在该网店网购金额的平均数和中位数;若平均数和中位数至少有一个不低于2千元,则该网店当日被评为“皇冠店”,试判断该网店当日能否被评为“皇冠店”.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数是定义域为R的奇函数.

k值;

,试判断函数单调性并求使不等式恒成立的t的取值范围;

,且上的最小值为,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(a+2cos2x)cos(2x+θ)为奇函数,且f( )=0,其中a∈R,θ∈(0,π).
(1)求a,θ的值;
(2)若f( )=﹣ ,α∈( ,π),求sin(α+ )的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线关于轴对称,顶点在坐标原点,直线经过抛物线的焦点.

(1)求抛物线的标准方程;

(2)若不经过坐标原点的直线与抛物线相交于不同的两点 ,且满足,证明直线轴上一定点,并求出点的坐标.

查看答案和解析>>

同步练习册答案