精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=|x+1|. (Ⅰ)解不等式f(x+8)≥10﹣f(x);
(Ⅱ)若|x|>1,|y|<1,求证:f(y)<|x|f( ).

【答案】(Ⅰ)解:原不等式即为|x+9|≥10﹣|x+1|. 当x<﹣9时,则﹣x﹣9≥10+x+1,解得x≤﹣10;
当﹣9≤x≤﹣1时,则x+9≥10+x+1,此时不成立;
当x>﹣1时,则x+9≥10﹣x﹣1,解得x≥0.
所以原不等式的解集为{x|x≤﹣10或x≥0}.
(Ⅱ)证明:要证 ,即 ,只需证明
则有 = =
= =
因为|x|2>1,|y|2<1,则 =
所以 ,原不等式得证
【解析】(Ⅰ) 分类讨论,解不等式f(x+8)≥10﹣f(x);(Ⅱ)利用分析法证明不等式.
【考点精析】根据题目的已知条件,利用绝对值不等式的解法的相关知识可以得到问题的答案,需要掌握含绝对值不等式的解法:定义法、平方法、同解变形法,其同解定理有;规律:关键是去掉绝对值的符号.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,己知△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E、F分别是AC、AD上的动点,且 =λ(0<λ<1)
(1)求证:不论λ为何值,总有EF⊥平面ABC:
(2)若λ= ,求三棱锥A﹣BEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在直角坐标系中,曲线的方程是,直线经过点,倾斜角为,以为极点,轴的正半轴为极轴建立极坐标系.

(1)写出曲线的极坐标方程和直线的参数方程;

(2)设直线与曲线相交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2016~2017·郑州高一检测)过点M(1,2)的直线l与圆C:(x-3)2+(y-4)2=25交于AB两点,C为圆心,当∠ACB最小时,直线l的方程是 (  )

A. x-2y+3=0 B. 2xy-4=0

C. xy+1=0 D. xy-3=0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,PD⊥平面ABCD,底面ABCD是菱形,∠BAD=60°AB=2PD=OACBD的交点,E为棱PB上一点.

1)证明:平面EAC⊥平面PBD

2)若PD∥平面EAC,求三棱锥P-EAD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ )的周期为π,且图象上的一个最低点为M( ).

(1)求f(x)的解析式及单调递增区间;

(2)当x∈[0,]时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂生产某种产品的固定成本(固定投入)为2 500元,已知每生产件这样的产品需要再增加可变成本 (元),若生产出的产品都能以每件500元售出,要使利润最大,该厂应生产多少件这种产品?最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥底面上一点,且.

(1)求证:平面

(2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列的前n项和为 ,数列满足: ,数列的前n项和为

(1)求数列的通项公式及前n项和;

(2)求数列的通项公式及前n项和;

(3)记集合,若M的子集个数为16,求实数的取值范围.

查看答案和解析>>

同步练习册答案