精英家教网 > 高中数学 > 题目详情
3名志愿者在10月1日至10月5日期间参加社区服务工作,若每名志愿者在这5天中任选两天参加社区服务工作,且各名志愿者的选择互不影响.求
(Ⅰ)这3名志愿者中在10月1日都参加社区服务工作的概率;
(Ⅱ)这3名志愿者中在10月1日至多有1人参加社区服务工作的概率.
解法一:(I)这3名志愿者中在10月1号参加社区服务工作的人数恰好为3人的事件为A
P(A)=
(
C14
)
3
(
C25
)
3
=
8
125

这3名志愿者中在10月1号参加社区服务工作的人数恰好为3人的概率为
8
125

(Ⅱ)这3名志愿者中在10月1号参加社区服务工作的人数至多为1人的事件为B
P(B)=
(
C24
)
3
(
C25
)
3
+
C13
C14
(
C24
)
2
(
C25
)
3
=
27
125
+
54
125
=
81
125

这3名志愿者中在10月1号参加社区服务工作的人数至多为1人的概率为
81
125

解法二:
(I)这3名志愿者中在10月1号参加社区服务工作的人数恰好为3人的事件为A
P(A)=(
2
5
)3=
8
125

这3名志愿者中在10月1号参加社区服务工作的人数恰好为3人的概率为
8
125

(Ⅱ)这3名志愿者中在10月1号参加社区服务工作的人数至多为1人的事件为B
P(B)=(
3
5
)3+
C13
(
2
5
)(
3
5
)2=
27
125
+
54
125
=
81
125

这3名志愿者中在10月1号参加社区服务工作的人数至多为1人的概率为
81
125
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

3名志愿者在10月1号至10月5号期间参加社区服务工作.
(Ⅰ)若每名志愿者在这5天中任选一天参加社区服务工作,且各志愿者的选择互不影响,求3名志愿者恰好连续3天参加社区服务工作的概率;
(Ⅱ)若每名志愿者在这5天中任选两天参加社区服务工作,且各志愿者的选择互不影响,记ξ表示这3名志愿者在10月1号参加社区服务工作的人数,求随机变量ξ的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:

3名志愿者在10月1日至10月5日期间参加社区服务工作,若每名志愿者在这5天中任选两天参加社区服务工作,且各名志愿者的选择互不影响.求
(Ⅰ)这3名志愿者中在10月1日都参加社区服务工作的概率;
(Ⅱ)这3名志愿者中在10月1日至多有1人参加社区服务工作的概率.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年辽宁省丹东市宽甸二中高二下学期期末考试数学(理) 题型:解答题

(本小题满分12分)
已知3名志愿者在10月1号至10月5号期间参加2011年国庆节志愿者活动工作.
(1)若每名志愿者在5天中任选一天参加社区服务工作,且各志愿者的选择互不影响,求3名志原者恰好连续3天参加社区服务工作的概率;
(2)若每名志愿者在这5天中任选两天参加社区服务工作,且各志愿者的选择互不影响,记表示这3名志愿者在10月1号参加志愿者服务工作的人数,求随机变量的数学期望.

查看答案和解析>>

科目:高中数学 来源:2012届辽宁省丹东市高二下学期期末考试数学(理) 题型:解答题

(本小题满分12分)

已知3名志愿者在10月1号至10月5号期间参加2011年国庆节志愿者活动工作.

(1)若每名志愿者在5天中任选一天参加社区服务工作,且各志愿者的选择互不影响,求3名志原者恰好连续3天参加社区服务工作的概率;

(2)若每名志愿者在这5天中任选两天参加社区服务工作,且各志愿者的选择互不影响,记表示这3名志愿者在10月1号参加志愿者服务工作的人数,求随机变量的数学期望.

 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3名志愿者在10月1日至10月5日期间参加社区服务工作,若每名志愿者在这5天中任选两天参加社区服务工作,且各名志愿者的选择互不影响.求
(Ⅰ)这3名志愿者中在10月1日都参加社区服务工作的概率;
(Ⅱ)这3名志愿者中在10月1日至多有1人参加社区服务工作的概率.

查看答案和解析>>

同步练习册答案