精英家教网 > 高中数学 > 题目详情
9.已知在四面体ABCD中,E、F分别是AC、BD的中点,若CD=2,AB=4,EF⊥CD,则EF与AB所成的角为(  )
A.90°B.45°C.60°D.30°

分析 取AD的中点G,连接GE,GF,由已知求出GE=1,GF=2,∠EFG即为EF与CD所成的角,EF⊥GE,由此能求出EF与AB所成的角的大小.

解答 解:取AD的中点G,连接GE,GF
∵在四面体ABCD中,E、F分别是AC、BD的中点,CD=2,AB=4,
∴GE∥CD,且GE=$\frac{1}{2}$CD=1,GF∥AB,且GF=$\frac{1}{2}$AB=2,
∴∠EFG即为EF与CD所成的角
又∵EF⊥CD,∴EF⊥GE,
∴∠EFG=30°.
∴EF与AB所成的角的大小为30°.

故选:D.

点评 本题考查异面直线所成角的大小的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.函数y=sin3x+cos3x的值域为[-$\sqrt{2}$,$\sqrt{2}$],最小正周期为$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.计算:$\underset{lim}{n→∞}$$\frac{2n}{4n+1}$=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数$f(x)=\sqrt{x+2}+{x^0}$的定义域为{x|x≥-2且x≠0}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在平面直角坐标系xOy中,已知动圆圆心M与y轴相切,并且与圆C:x2+y2-2x=0外切.
(1)求动圆圆心M的轨迹方程;
(2)过顶点H(-2,-1)做斜率为k的直线与M的轨迹交于不同两点A、B,再过定点S(1,0)做斜率为k的直线与M的轨迹交于不同两点C,D,并且A,B,C,D在y轴的同一侧,试探求$\frac{HA•HB}{CD}$是否为定值,请求出.若不是定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在四棱锥P-ABCD中,底面ABCD是菱形,∠DAB=60°,PD⊥平面ABCD,PD=AD=1,点E、F分别为AB和PD中点,求PC与平面PAB所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=|x2-2x|.
(1)在给出的坐标系中作出y=f(x)的图象;
(2)根据图象写出函数f(x)的单调区间和值域;
(3)若集合{x|f(x)=a}恰有三个元素,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数y=-x2+x-1图象与x轴的交点个数是(  )
A.0个B.1个C.2个D.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,圆锥的底面圆心为O,直径为AB,C为半圆弧AB的中点,E为劣弧CB的中点,且AB=2PO.
(1)求证PO⊥AC;
(2)求异面直线PA与OE所成角的大小.

查看答案和解析>>

同步练习册答案