精英家教网 > 高中数学 > 题目详情

【题目】高二年级举行一次演讲赛共有10位同学参赛,其中一班有3位,二班有2位,其它班有5位,若采用抽签的方式确定他们的演讲顺序,则一班有3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为:(   )

A. B. C. D.

【答案】B

【解析】解:由题意知本题是一个古典概型,

试验发生包含的所有事件是10位同学参赛演讲的顺序共有:

满足条件的事件要得到一班有3位同学恰好被排在一起而二班的2位同学没有被排在一起的演讲的顺序可通过如下步骤:

将一班的3位同学捆绑在一起,有种方法;

将一班的一梱看作一个对象与其它班的5位同学共6个对象排成一列,有种方法;

在以上6个对象所排成一列的7个间隙(包括两端的位置)中选2个位置,将二班的2位同学插入,有种方法.

根据分步计数原理(乘法原理),共有 种方法.

一班有3位同学恰好被排在一起(指演讲序号相连),

而二班的2位同学没有被排在一起的概率为:P= =

故选B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]

在平面直角坐标系中,直线的参数方程为为参数,),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(Ⅰ)若,求直线的普通方程及曲线的直角坐标方程;

(Ⅱ)若直线与曲线有两个不同的交点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种植园在芒果临近成熟时,随机从一些芒果树上摘下100个芒果,其质量分别在(单位:克)中,经统计得频率分布直方图如图所示.

(1) 经计算估计这组数据的中位数;

(2)现按分层抽样从质量为的芒果中随机抽取个,再从这个中随机抽取个,求这个芒果中恰有个在内的概率.

(3)某经销商来收购芒果,以各组数据的中间数代表这组数据的平均值,用样本估计总体,该种植园中还未摘下的芒果大约还有个,经销商提出如下两种收购方案:

A:所以芒果以/千克收购;

B:对质量低于克的芒果以/个收购,高于或等于克的以/个收购.

通过计算确定种植园选择哪种方案获利更多?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左右焦点分别为F1F2,离心率为,设过点F2的直线l被椭圆C截得的线段为MN,当lx轴时,|MN|3

1)求椭圆C的标准方程;

2)在x轴上是否存在一点P,使得当l变化时,总有PMPN所在的直线关于x轴对称?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线C的参数方程为 (其中为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系中,直线的极坐标方程为.

C的普通方程和直线的倾斜角;

设点(0,2),交于两点,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆与圆.

1)若圆与圆外切,求实数m的值;

2)在(1)的条件下,若直线l与圆的相交弦长为且过点,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某乡镇政府为了解决农村教师的住房问题,计划征用一块土地盖一幢建筑总面积为10000公寓楼(每层的建筑面积相同).已知士地的征用费为,土地的征用面积为第一层的倍,经工程技术人员核算,第一层建筑费用为,以后每增高一层,其建筑费用就增加,设这幢公寓楼高层数为n,总费用为万元.(总费用为建筑费用和征地费用之和)

1)若总费用不超过835万元,求这幢公寓楼最高有多少层数?

2)试设计这幢公寓的楼层数,使总费用最少,并求出最少费用.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四边形是矩形,,将沿着对角线AC翻折,得到,设顶点在平面上的投影为O.

1)若点O恰好落在边AD上,①求证:平面;②若,当BC取到最小值时,求k的值;

2)当时,若点O恰好落在的内部(不包括边界),求二面角的余弦值的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若在区间上不是单调函数,求实数的范围;

(2)若对任意,都有恒成立,求实数的取值范围;

(3)当时,设,对任意给定的正实数,曲线上是否存在两点,使得是以为坐标原点)为直角顶点的直角三角形,而且此三角形斜边中点在轴上?请说明理由.

查看答案和解析>>

同步练习册答案