精英家教网 > 高中数学 > 题目详情
12.已知f(x)=algx+1-a对任意a∈[-1,1]恒有f(x)>0,则x的取值范围是(  )
A.(0,100)B.(1,100)C.(0,10)D.(10,100)

分析 令g(a)=a(lgx-1)+1,由题意可得$\left\{\begin{array}{l}{g(-1)>0}\\{g(1)>0}\end{array}\right.$,由对数不等式的解法,即可得到所求范围.

解答 解:令g(a)=a(lgx-1)+1,
由题意可得$\left\{\begin{array}{l}{g(-1)>0}\\{g(1)>0}\end{array}\right.$,
即为$\left\{\begin{array}{l}{-(lgx-1)+1>0}\\{lgx-1+1>0}\end{array}\right.$,
即有$\left\{\begin{array}{l}{0<x<100}\\{x>10}\end{array}\right.$,
解得10<x<100.
故选:D.

点评 本题考查函数的单调性的运用:解不等式,注意构造一次函数,运用一次函数的单调性,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知a+b+c=1.a2+b2+c2=1,求a+b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.从0,-1,-2,3,4,5这六个数中任意取3个数字作为二次函数y=ax2+bx+c的系数a,b,c
(1)共能组成多少个不同的二次函数?
(2)能组成多少个图象的对称轴是y轴的二次函数?
(3)能组成多少个图象过原点,且顶点在第二象限的二次函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知二次函数f(x)=ax2+bx+c经过点(-1,0),(3,0),(0,-3).
(1)求f(x)的解析式;
(2)当x∈[t,t+1]时,求f(x)的最小值g(t).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.当a>0且a≠1时,把函数y=a-x和y=logax的图象画在同一平面直角坐标系中,可以是(  )
A.①②B.①③C.②③D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.一次课程改革交流会上准备交流试点校的5篇论文和非试点校的3篇论文,排列次序可以是任意的,则最先和最后交流的论文不能来自同类校的概率是$\frac{15}{28}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知tanθ=$\frac{3}{4}$,θ为第三象限角,求$cos(θ-\frac{π}{4})$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)的定义域为(0,+∞),若y=$\frac{f(x)}{x}$在(0,+∞)上为增函数,则称f(x)为“一阶比增函数”;若y=$\frac{f(x)}{{x}^{2}}$在(0,+∞)上为增函数,则称f(x)为“二阶比增函数”.我们把所有“一阶比增函数”组成的集合记为Ω1,所有“二阶比增函数”组成的集合记为Ω2,.
(Ⅰ)已知函数f(x)=x3-2hx2-hx,若f(x)∈Ω1,且f(x)∉Ω2,求实数h的取值范围;
(Ⅱ)已知0<a<b<c,f(x)∈Ω1且f(x)的部分函数值由下表给出,
xabca+b+c
f(x)ddt4
求证:d(2d+t-4)>0;
(Ⅲ)定义集合Ψ={f(x)|f(x)∈Ω2},且存在常数k,使得任取x∈(0,+∞),f(x)<k},请问:是否存在常数m,使得?f(x)∈Ψ,?x∈(0,+∞),有f(x)<M成立?若存在,求出M的最小值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某校决定为本校上学时间不少于30分钟的学生提供校车接送服务.为了解学生上学所需时间,从全校600名学生中抽取50人统计上学时间(单位:分钟),现对600人随机编号为001,002,…600.抽取50位学生上学时间均不超过60分钟,将时间按如下方式分成六组,第一组上学时间在[0,10),第二组上学时间在[10,20),…第六组上学时间在[50,60]得到各组人数的频率分布直方图.如图.
(1)若抽取的50个样本是用系统抽样的方法得到,且第一段的号码为006,则第五段抽取的号码是什么?
(2)若从50个样本中属于第4组和第6组的所有人中随机抽取2人,设他们上学时间分别为a、b,求满足|a-b|>10的事件的概率;
(3)设学校配备的校车每辆可搭载40名学生,请根据抽样的结果估计全校应有多少辆这样的校车?

查看答案和解析>>

同步练习册答案