精英家教网 > 高中数学 > 题目详情
18.在区间[0,2]上任取两个实数x,y,则x2+y2≤1 的概率为$\frac{π}{16}$.

分析 该题涉及两个变量,故是与面积有关的几何概型,分别表示出满足条件的面积和整个区域的面积,最后利用概率公式解之即可.

解答 解:由题意可得,区间[0,2]上任取两个实数x,y的区域为边长为2的正方形,面积为4.
∵x2+y2≤1的区域是圆的面积的$\frac{1}{4}$,其面积S=$\frac{π}{4}$,
∴在区间[0,2]上任取两个实数x,y,则x2+y2≤1 的概率为$\frac{π}{16}$.
故答案为$\frac{π}{16}$.

点评 本题主要考查了与面积有关的几何概率的求解,解题的关键是准确求出区域的面积,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知向量$\overrightarrow a$=(cos($\frac{π}{2}$-x),sin($\frac{π}{2}$+x)),$\overrightarrow b$=(sin($\frac{π}{2}$+x),sinx),若x=-$\frac{π}{12}$,则向量$\overrightarrow a$与$\overrightarrow b$的夹角为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{2}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知命题p:?x∈R,mx2+1<0,命题q:?x∈R,x2+mx+1>0,若p∧q为真命题,则实数m的取值范围是(  )
A.(-∞,-2)B.[-2,0)C.(-2,0)D.(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.椭圆E经过点A(2,3),对称轴为坐标轴,离心率$e=\frac{1}{2}$,焦点F1、F2在x轴上,过左焦点F1 与A 做直线交椭圆E于B.
(1)求椭圆E的方程;
(2)求△ABF2的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知定义在R上的奇函数f(x),当x>0时,f(x)=-x2+2x
(1)求函数f(x)在R上的解析式;
(2)写出f(x)单调区间(不必证明)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在三角形ABC中,已知A=60°,b=1,其面积为$\sqrt{3}$,则$\frac{a+b+c}{sinA+sinB+sinc}$为(  )
A.$3\sqrt{3}$B.$\frac{{\sqrt{39}}}{2}$C.$\frac{{26\sqrt{3}}}{3}$D.$\frac{{2\sqrt{39}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若集合A={-1,0,1,2},集合B={-1,1,3,5},则A∩B等于(  )
A.{-1,1}B.{-1,0,1}C.{-1,0,1,2}D.{-1,0,1,2,3,5}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)=$\frac{2{e}^{x}}{{e}^{x}+1}$,在F(x)=f(x)+1和G(x)=f(x)-1中,G(x)为奇函数,若f(b)=$\frac{3}{2}$,则f(-b)=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知直线l过点P(2,4),且与圆O:x2+y2=4相切,则直线l的方程为(  )
A.x=2或3x-4y+10=0B.x=2或x+2y-10=0C.y=4或3x-4y+10=0D.y=4或x+2y-10=0

查看答案和解析>>

同步练习册答案