精英家教网 > 高中数学 > 题目详情
已知集合A={y|y=-x2+3,x∈R},B={x|y=
x+3
}
,则A∩B=(  )
A、{(0,3),(1,2)}
B、(-3,-3)
C、[-3,3]
D、{y|y≤3}
考点:交集及其运算
专题:函数的性质及应用,集合
分析:由二次函数的性质求出集合A,由偶次根号下被开方数大于等于零求出集合B,由交集的运算求出A∩B.
解答: 解:由y=-x2+3≤3得,则集合A={y|y≤3}=(-∞,3],
由x+3≥0得x≥-3,则集合B=[-3,+∞),
所以A∩B=[-3,3],
故选:C.
点评:本题考查交集及其运算,以及二次函数的性质,函数的定义域,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列几个命题:①不等式
3
x-1
<x+1的解集为{x|x<-2,或x>2};②已知a,b均为正数,且
1
a
+
4
b
=1,则a+b的最小值为9;③已知x,y均为正数,且x+3y-2=0,则3x+27y+1的最小值为7;其中正确的有
 
.(以序号作答)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,D、E、F分别是BC、CA、AB的中点,O是三角形内一点.求证:
(1)若O是△ABC的重心,则
OA
+
OB
+
OC
=0;
(2)
AD
+
BE
+
CF
=0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a、b、c、d为非负实数,f(x)=
ax+b
cx+d
(x∈R),且f(19)=19,f(97)=97,若x≠-
d
c
,对任意的实数x均有f(f(x))=x成立,试求出f(x)值域外的唯一数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=cos(
π
3
+x)cos(
π
3
-x),g(x)=
1
2
sin2x-
1
4

(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)当x∈[
19π
24
,π]时,求函数h(x)=f(x)-g(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x∈(0,3),则函数y=
1
x
+
4
3-x
的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知复数z=(3-4i)•i,则|z|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

求下列函数的定义域:
(1)f(x)=lg(5x-2)
(2)f(x)=
3x+2

查看答案和解析>>

科目:高中数学 来源: 题型:

某地拟模仿图甲建造一座大型体育馆,其设计方案侧面的外轮廓线如图乙所示:曲线AB是以点E为圆心的圆的一部分,其中E(0,t)(0<t≤25,单位:米);曲线BC是抛物线y=-ax2+50(a>0)的一部分;CD⊥AD,且CD恰好等于圆E的半径.假定拟建体育馆的高OB=50米.
(1)若要求CD=30米,AD=24
5
米,求t与a的值;
(2)若要求体育馆侧面的最大宽度DF不超过75米,求a的取值范围;
(3)若a=
1
25
,求AD的最大值.
(参考公式:若f(x)=
a-x
,则f′(x)=-
1
2
a-x

查看答案和解析>>

同步练习册答案