精英家教网 > 高中数学 > 题目详情

【题目】(1)求不等式|x1||x2|≥5的解集;

(2)若关于x的不等式|ax2|<3的解集为,求a的值.

【答案】(1) {x|x3x≥2} (2) a=-3

【解析】

(1)三种情况进行讨论即可.

(2)根据绝对值不等式的求解,分情况讨论的范围再确定区间端点的值即可.

(1)x<2时,不等式等价于-(x1)(x2)≥5,解得x3

当-2≤x<1时,不等式等价于-(x1)(x2)≥5,即3≥5,无解;

x≥1时,不等式等价于x1x2≥5,解得x≥2.

综上,不等式的解集为{x|x3x≥2}.

(2)|ax2|<3,∴-1<ax<5.

a>0时, , ,且无解;

a0时,xR,与已知条件不符;

a<0时, ,,且,

解得a=-3.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】荷花池中,有一只青蛙在成品字形的三片荷叶上跳来跳去(每次跳跃时,均从一叶跳到另一叶),而且逆时针方向跳的概率是顺时针方向跳的概率的两倍,如图所示.假设现在青蛙在A叶上,则跳四次之后停在A叶上的概率是_________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若数列满足:存在正整数T,对于任意正整数n都有成立,则称数列为周期数列,周期为T.已知数列满足,则下列结论中错误的是(

A.,则m可以取3个不同的值;

B.,则数列是周期为3的数列;

C.对于任意的T≥2,存在,使得是周期为的数列

D.存在,使得数列是周期数列

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2016年入冬以来,各地雾霾天气频发,频频爆表(是指直径小于或等于微米的颗粒物),各地对机动车更是出台了各类限行措施,为分析研究车流量与的浓度是否相关,某市现采集周一到周五某一时间段车流量与的数据如下表:

时间

周一

周二

周三

周四

周五

车流量(万辆)

50

51

54

57

58

的浓度(微克/立方米)

69

70

74

78

79

1)请根据上述数据,在上面给出的坐标系中画出散点图;

2)试判断是否具有线性关系,若有请求出关于的线性回归方程,若没有,请说明理由;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以直角坐标系的原点为极点, 轴的正半轴为极轴,并在两种坐标系中取相同的长度单位,点的极坐标为为圆心4为半径;又直线的极坐标方程为

(Ⅰ)求直线和圆的普通方程;

试判定直线和圆的位置关系.若相交,则求直线被圆截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】由国家公安部提出,国家质量监督检验检疫总局发布的《车辆驾驶人员血液、呼气酒精含量阀值与检验标准(GB/T19522-2010)》于2011年7月1日正式实施.车辆驾驶人员酒饮后或者醉酒后驾车血液中的酒精含量阀值见表.经过反复试验,一般情况下,某人喝一瓶啤酒后酒精在人体血液中的变化规律的“散点图”见图,且图表示的函数模型,则该人喝一瓶啤酒后至少经过多长时间才可以驾车(时间以整小时计算)?(参考数据:

驾驶行为类型

阀值

饮酒后驾车

醉酒后驾车

车辆驾车人员血液酒精含量阀值

喝1瓶啤酒的情况

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

(1)若,判断函数的单调性;

(2)证明:

(3)设 ,对,有恒成立,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】树立和践行绿水青山就是金山银山,坚持人与自然和谐共生的理念越来越深入人心,已形成了全民自觉参与,造福百姓的良性循环.据此,某网站推出了关于生态文明建设进展情况的调查,大量的统计数据表明,参与调查者中关注此问题的约占80%.现从参与调查的人群中随机选出人,并将这人按年龄分组:第1,第2,第3,第4,第5,得到的频率分布直方图如图所示:

1)求的值;

2)求出样本的平均数(同一组数据用该区间的中点值作代表);

3)现在要从年龄较小的第12组中用分层抽样的方法抽取人,再从这人中随机抽取人进行问卷调查,求第2组中抽到人的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于异面直线ab,下列四个命题正确的有(

A.过直线a有且仅有一个平面β,使bβ

B.过直线a有且仅有一个平面β,使b//β

C.在空间存在平面β,使a//βb//β

D.在空间不存在平面β,使aβbβ

查看答案和解析>>

同步练习册答案