精英家教网 > 高中数学 > 题目详情
13.已知双曲线Γ:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的左、右焦点分别为F1,F2,斜率为$\sqrt{3}$的直线,经过双曲线Γ的右焦点F2与双曲线Γ在第一象限交于点P,若△PF1F2是等腰三角形,则双曲线Γ的离心率为$\frac{\sqrt{3}+1}{2}$.

分析 由题可知,等腰三角形的底为PF1,等腰三角形的腰F1F2=PF2=2c,可得P的坐标,代入双曲线方程,进而计算可得结论.

解答 解:由题可知,等腰三角形的底为PF1,等腰三角形的腰F1F2=PF2=2c,
∴P(2c,$\sqrt{3}$c)
代入双曲线方程可得$\frac{4{c}^{2}}{{a}^{2}}-\frac{3{c}^{2}}{{b}^{2}}=1$,
∴4e4-8e2+1=0,
∴e=$\frac{\sqrt{3}+1}{2}$.
故答案为:$\frac{\sqrt{3}+1}{2}$.

点评 本题考查求双曲线的离心率,考查分析问题、解决问题的能力,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.a,b,c为△ABC三边之长,若(a+b+c)(a+b-c)=ab,则△ABC的最大角为(  )
A.30°B.120°C.90°D.60°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.将集合{2s+2t|0≤s<t且s,t∈Z}中的元素按上小下大,左小右大的顺序排成如图的三角形数表,将数表中位于第i行第j列的数记为bij(i≥j>0),则b75=144.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列推理中属于归纳推理且结论正确的是(  )
A.设数列﹛an﹜的前n项和为sn,由an=2n-1,求出s1=12,s2=22,s3=32,…推断sn=n2
B.由f(x)=xcosx,满足f(-x)=-f(x)对?x∈R都成立,推断f(x)=xcosx为奇函数
C.由圆x2+y2=r2的面积s=πr2推断:椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的面积s=πab
D.由(1+1)2>21,(2+1)2>22,(3+1)2>23,…,推断对一切正整数n,(n+1)2>2n

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若f(a)=a2+a+3(a∈Z),以下说法正确的个数是(  )
①f(a)一定为偶数;
②f(a)一定为质数;
③f(a)一定为奇数;
④f(a)一定为合数.
A.3B.2C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在△ABC中,已知AC=$\sqrt{19}$,BC=2,B=$\frac{2π}{3}$,则边AC上的高为(  )
A.$\frac{3\sqrt{19}}{19}$B.$\frac{3\sqrt{57}}{19}$C.$\frac{\sqrt{3}}{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设F1、F2分别是椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点,与直线y=b相切的⊙F2交椭圆于点E,E恰好是直线EF1与⊙F2的切点.
(1)求该椭圆的离心率;
(2)若点E到椭圆的右准线的距离为$\frac{6\sqrt{5}}{5}$,过椭圆的上顶点A的直线与⊙F2交于B、C两点,且$\overrightarrow{AB}$=λ$\overrightarrow{AC}$,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.由7个字母D,S,S,W,W,Y,H组合成商品代码,且字母Y不在最后一个位置,两个字母W不向邻,则满足条件的不同商品代码个数为780.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知关于x的不等式$\frac{x-1}{x+1}<0$的解集为P,不等式|x-1|≤1的解集Q.
求:(1)P∪Q; 
(2)(∁RP)∩Q.

查看答案和解析>>

同步练习册答案