分析 由题可知,等腰三角形的底为PF1,等腰三角形的腰F1F2=PF2=2c,可得P的坐标,代入双曲线方程,进而计算可得结论.
解答 解:由题可知,等腰三角形的底为PF1,等腰三角形的腰F1F2=PF2=2c,
∴P(2c,$\sqrt{3}$c)
代入双曲线方程可得$\frac{4{c}^{2}}{{a}^{2}}-\frac{3{c}^{2}}{{b}^{2}}=1$,
∴4e4-8e2+1=0,
∴e=$\frac{\sqrt{3}+1}{2}$.
故答案为:$\frac{\sqrt{3}+1}{2}$.
点评 本题考查求双曲线的离心率,考查分析问题、解决问题的能力,注意解题方法的积累,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 设数列﹛an﹜的前n项和为sn,由an=2n-1,求出s1=12,s2=22,s3=32,…推断sn=n2 | |
B. | 由f(x)=xcosx,满足f(-x)=-f(x)对?x∈R都成立,推断f(x)=xcosx为奇函数 | |
C. | 由圆x2+y2=r2的面积s=πr2推断:椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的面积s=πab | |
D. | 由(1+1)2>21,(2+1)2>22,(3+1)2>23,…,推断对一切正整数n,(n+1)2>2n |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 3 | B. | 2 | C. | 1 | D. | 0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{3\sqrt{19}}{19}$ | B. | $\frac{3\sqrt{57}}{19}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com