精英家教网 > 高中数学 > 题目详情

【题目】均为非负整数,在做的加法时各位均不进位(例如,),则称为“简单的”有序对,而称为有序数对的值,那么值为2964的“简单的”有序对的个数是( )

A. 525 B. 1050 C. 432 D. 864

【答案】B

【解析】分析:由题意知本题是一个分步计数原理,第一位取法两种为0,1,2,第二位有10种从0,1,2,3,4,5,6,7,8,9 第三位有7种,0,1,2,3,4,5,6第四为有5种,0,1,2,3,4根据分步计数原理得到结果.

详解:

由题意知本题是一个分步计数原理,

第一位取法两种为0,1 2

第二位有10种从0,1,2,3,4,5,6,7,8,9

第三位有7种,0,1,2,3,4,5,6

第四为有5种,0,1,2 3,4

根据分步计数原理知共有3×10×7×5=1050

故答案为:B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】三棱锥S﹣ABC及其三视图中的正视图和侧视图如图所示,则该三棱锥S﹣ABC的外接球的表面积为(
A.32π
B.
C.
D. π

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 f(x+1)=f(x﹣1),f(x)=f(﹣x+2),方程 f(x)=0 [0,1]内有且只有一个 x=,则 f(x)=0 在区间[0,2016]内根的个数为

A. 2015 B. 1007 C. 2016 D. 1008

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四面体ABOC中,OC⊥OA,OC⊥OB,∠AOB=120°,且OA=OB=OC=1
(Ⅰ)设为P为AC的中点,Q为AB上一点,使PQ⊥OA,并计算 的值;
(Ⅱ)求二面角O﹣AC﹣B的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数fx)=cos2x)的图象向左平移个单位长度后,得到函数gx)的图象,则下列结论中正确的是_____.(填所有正确结论的序号)

gx)的最小正周期为4π

gx)在区间[0]上单调递减;

gx)图象的一条对称轴为x

gx)图象的一个对称中心为(0).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】假设每一架飞机的每一个引擎在飞行中出现故障概率均为,且各引擎是否有故障是独立的,已知4引擎飞机中至少有3个引擎飞机正常运行,飞机就可成功飞行;2引擎飞机要2个引擎全部正常运行,飞机才可成功飞行.要使4引擎飞机比2引擎飞机更安全,则的取值范围是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】爱心超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完根据往年销售经验,每天需求量与当天最高气温单位:有关如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间,需求量为300瓶;如果最高气温低于20,需求量为200为了确定六月份的订购计划,统计了前三年六月份每天的最高气温数据,得到下面的频数分布表:

最高气温

天数

2

16

36

25

7

4

(1)求六月份这种酸奶一天的需求量不超过300瓶的频率;

(2)当六月份有一天这种酸奶的进货量为450瓶时,求这一天销售这种酸奶的平均利润(单位:元)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆过点,且圆心在直线上.

(1)求圆的方程;

(2)平面上有两点,点是圆上的动点,求的最小值;

(3)若轴上的动点,分别切圆两点,试问:直线是否恒过定点?若是,求出定点坐标,若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两袋中各装有大小相同的小球9个,其中甲袋中红色、黑色、白色小球的个数分别为234,乙袋中红色、黑色、白色小球的个数均为3,某人用左手从甲袋中取球,用右手从乙袋中取球,

1)若左右手各取一球,求两只手中所取的球颜色不同的概率;

2)若一次在同一袋中取出两球,如果两球颜色相同则称这次取球获得成功。某人第一次左手先取两球,第二次右手再取两球,记两次取球的获得成功的次数为随机变量X,求X的分布列和数学期望.

查看答案和解析>>

同步练习册答案