精英家教网 > 高中数学 > 题目详情
19.若$sinα=\frac{1}{5}$,则cos2α=(  )
A.$\frac{23}{25}$B.$-\frac{2}{25}$C.$-\frac{23}{25}$D.$\frac{2}{25}$

分析 直接代入二倍角公式cos2α=1-2sin2α即可得到答案.

解答 解:∵$sinα=\frac{1}{5}$,
∴cos2α=1-2sin2α=1-2×$\frac{1}{25}$=$\frac{23}{25}$,
故选A.

点评 本题主要考查二倍角的余弦公式的应用.二倍角的余弦公式:cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知a=sin21°,b=cos72°,c=tan23°,则a,b,c的大小关系是(  )
A.a>b>cB.b>a>cC.c>b>aD.c>a>b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数y=asinx-bcosx满足f($\frac{2π}{3}$-x)=f(x),那么$\frac{a}{b}$=(  )
A.$\sqrt{3}$B.1C.-$\sqrt{3}$D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知集合M={-1,0,1},N={x|(x+2)(x-1)<0},则M∩N=(  )
A.{-1,0}B.{0,1}C.{0}D.{-1}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知a=0.20.3,b=log0.23,c=log0.24,则a、b、c从小到大的顺序为c<b<a.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数$y={log_2}cos(x+\frac{π}{4})$的单调减区间为(  )
A.$[2kπ-\frac{π}{4},2kπ+\frac{π}{4})\begin{array}{l}{\;}&{(k∈Z)}\end{array}$B.$[2kπ-\frac{5π}{4},2kπ-\frac{π}{4}]\begin{array}{l}{\;}&{(k∈Z)}\end{array}$
C.$[2kπ-\frac{π}{4},2kπ+\frac{3π}{4}]\begin{array}{l}{\;}&{(k∈Z)}\end{array}$D.$(2kπ-\frac{3π}{4},2kπ-\frac{π}{4}]\begin{array}{l}{\;}&{(k∈Z)}\end{array}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数$f(x)=x+\frac{4}{x}$,$g(x)={log_a}({{x^2}-2x+3})$,其中a>0,且a≠1.
(Ⅰ)用定义证明函数f(x)在[2,+∞)是增函数;
(Ⅱ)若对于任意的x0∈[2,4],总存在x1∈[0,3],使得f(x0)=g(x1)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.是否存在这样的实数a,使得函数f(x)=x2+(3a-2)x+a-1图象在区间(-1,3)上与x轴有且只有一个交点?若存在,求出a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在△ABC中,BC=$\sqrt{2},AC=1,∠C=\frac{π}{4}$,则AB等于1.

查看答案和解析>>

同步练习册答案