精英家教网 > 高中数学 > 题目详情
已知实数a,b满足:-1<a-b<3且2<a+b<4,则2a-3b的取值范围是(  )
A、(-
13
2
 ,
17
2
)
B、(-
3
2
 ,
11
2
)
C、(-
9
2
 ,
13
2
)
D、(-
7
2
 ,
13
2
)
考点:简单线性规划
专题:不等式的解法及应用
分析:作出不等式组对于的平面区域,设z=2a-3b,利用数形结合即可得到结论.
解答: 解:作出不等式组对于的平面区域如图:
设z=2a-3b,则b=
2
3
a-
z
3

平移直线b=
2
3
a-
z
3
,由图象可知当直线b=
2
3
a-
z
3
经过点A时,直线b=
2
3
a-
z
3
的截距最大,此时z最小,
当直线b=
2
3
a-
z
3
经过点B时,直线b=
2
3
a-
z
3
的截距最小,此时z最大,
a-b=-1
a+b=4
,解得
a=
3
2
b=
5
2
,此时zmin=2×
3
2
-3×
5
2
=-
9
2

a-b=3
a+b=2
,解得
a=
5
2
b=-
1
2
,此时zmax=2×
5
2
-3×(-
1
2
)
=
13
2

即2a-3b的取值范围是(-
9
2
 ,
13
2
)

故选:C.
点评:本题主要考查线性规划的应用,利用z的几何意义,利用数形结合是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

有下列命题:
①函数f(-x+2)与y=f(x-2)的图象关于y轴对称
②若函数f(x)=ex,则对任意的x1,x2∈R,都有f(
x1+x2
2
)≤
f(x1)+f(x2)
2

③若函数f(x)=loga|x|(a>0,a≠1)在(0,+∞)上单调递增,则f(-2)>f(a+1)
④若函数f(x+2013)=x2-2x-1(x∈R),则函数的最小值为-2
其中正确的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

实数x,y满足不等式组
x≥0
y≤x
2x+y+k≤0
(k
为常数),且x+3y的最大值为12,则实数k=(  )
A、9B、-9C、-12D、12

查看答案和解析>>

科目:高中数学 来源: 题型:

三棱锥P-ABC的四个顶点均在同一球面上,其中△ABC是正三角形,PA⊥平面ABC,PA=2AB=6,则该球的体积为(  )
A、16
3
π
B、32
3
π
C、48π
D、64
3
π

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线E:
x2
a2
-
y2
b2
=1(a,b>0)的左焦点为F(-3,0),过点F的直线与E相交于A,B两点,若线段AB的中点为N(12,15),则E的方程为(  )
A、
x2
3
-
y2
6
=1
B、
x2
4
-
y2
5
=1
C、
x2
5
-
y2
4
=1
D、
x2
6
-
y2
3
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

设F为抛物线y2=2x的焦点,A、B、C为抛物线上三点,若F为△ABC的重心,则|
FA
|+|
FB
|+|
FC
|的值为(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

在样本频率分布直方图中,共有五个小长方形,这五个小长方形的面积由小到大成等差数列{an}.已知a2=2a1,且样本容量为300,则小长方形面积最大的一组的频数为(  )
A、100B、120
C、150D、200

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1(-1,0),F2(1,0)为椭圆C的左、右焦点,且点P(1,
2
3
3
)在椭圆C上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点F1的直线l交椭圆C于A,B两点,问△F2AB的内切圆的面积是否存在最大值?若存在求其最大值及此时的直线方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+lnx
x

(Ⅰ)若函数在区间(a,a+
1
2
 )(a>0)上存在极值,求实数a的取值范围;
(Ⅱ)求证:当x≥1时,不等式f(x)>
2sinx
x+1
恒成立.

查看答案和解析>>

同步练习册答案