精英家教网 > 高中数学 > 题目详情
16.一个几何体的三视图如图所示,则该几何体的体积为(  )
A.πB.C.D.

分析 由已知中的三视图可得:该几何体是一个圆柱,代入圆柱体积公式,可得答案.

解答 解:由已知中的三视图可得:该几何体是一个圆柱,
圆柱的底面直径为2,
故圆柱的底面半径r=1,
圆柱的底面面积S=π,
圆柱的高h=2,
故圆柱的体积V=Sh=2π,
故选:B.

点评 本题考查的知识点是圆柱的体积和表面积,简单几何体的三视图,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知f(x)=x2-ax+lnx,a∈R.
(1)当a=3时,求函数f(x)的极小值;
(2)令g(x)=x2-f(x),是否存在实数a,当x∈[1,e](e是自然对数的底数)时,函数g(x)取得最小值为1.若存在,求出a的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.圆C1:(x-1)2+(y-3)2=9和C2:x2+(y-2)2=1,M,N分别是圆C1,C2上的点,P是直线y=-1上的点,则|PM|+|PN|的最小值是(  )
A.5$\sqrt{2}$-4B.$\sqrt{17}$-1C.6-2$\sqrt{2}$D.$\sqrt{17}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若$\overrightarrow{a}$,$\overrightarrow{b}$是单位向量,且$\overrightarrow{a}$•$\overrightarrow{b}$=$\frac{1}{3}$,若向量$\overrightarrow{c}$满足$\overrightarrow{c}$•$\overrightarrow{a}$=$\overrightarrow{c}$•$\overrightarrow{b}$=2,则|$\overrightarrow{c}$|=$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设a>0为常数,若对任意正实数x,y不等式(x+y)($\frac{1}{x}$+$\frac{a}{y}$)≥9恒成立,则a的最小值为(  )
A.4B.2C.81D.$\frac{81}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在学习数学的过程中,我们通常运用类比猜想的方法研究问题.
(1)在圆x2+y2=r2(r>0)中,AB为圆的任意一条直径,C为圆上异于A、B的任意一点,当直线AC与BC的斜率kAC、kBC存在时,求kAC•kBC的值;
(2)在椭圆$\frac{x^2}{9}+\frac{y^2}{4}=1$中,AB为过椭圆中心的任意一条弦,C为椭圆上异于A、B的任意一点,当直线AC与BC的斜率kAC、kBC存在时,求kAC•kBC的值;
(3)直接写出椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$中类似的结论(不用证明).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在正三角形△ABC内任取一点P,则点P到A,B,C的距离都大于该三角形边长一半的概率为(  )
A.1-$\frac{\sqrt{3}π}{6}$B.1-$\frac{\sqrt{3}π}{12}$C.1-$\frac{\sqrt{3}π}{9}$D.1-$\frac{\sqrt{3}π}{18}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知f(x)=ax2-x-c,若不等式f(x)>0的解集为{x|-2<x<1},则函数y=f(-x)的图象为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数f(x)=$\left\{\begin{array}{l}|{lo{g}_{5}(1-x)|,(x<1)}\\{-(x-2)^{2}+2,(x>1,x≠2)}\end{array}\right.$ 且对于方程f(x)2-af(x)+a2-3=0有7个实数根,则实数a的取值范围是$\sqrt{3}<a<2$.

查看答案和解析>>

同步练习册答案