精英家教网 > 高中数学 > 题目详情
设x,y∈R,i,j为直角坐标平面内x轴、y轴正方向上的单位向量,若向量a=xi+(y+
2
)j,b=xi+(y-
2
),且|a|+|b|=4

(I)求点M(x,y)的轨迹C的方程;
(II)若轨迹C上在第一象限的一点P的横坐标为1,作斜率为
2
的直线l与轨迹C交于不同两点A、B,求△PAB面积的最大值.
分析:(I)条件“|a|+|b|=4”可以看成是动点到两定点的距离之和为4,联想椭圆的定义解决“点P(x,y)的轨迹C”;
(II)△AOB的面积取到最大值问题,要先建立关于某个自变量的函数,后再求此函数的最大值即可.
解答:解:(I)∵a=xi+(y+
2
)j,b=xi+(y-
2
),且|a|+|b|=4

∴点P(x,y)到点( 0,
2
),(0,-
2
)的距离之和为4,
故点P的轨迹方程为
x 2
4
+
y 2
2
=1

(II)设A(x1,y1),B(x2,y2)依题意得,直线AB的方程y=
2
x+m,代入椭圆方程,得4x2+2
2
mx+m2-4=0,
则x1+x2=-
2
2
m,x1•x2=
1
4
(m2-4),
又O点到AB的距离d=
|m|
3

因此,S△AOB=
1
2
|AB|•d
=
1
2
(1+1)[(x1+x22-4x1x2]  
|m|
3

=
1
2
1
2
(8-m)
2
m2
2

∴当8-m2=m2时,即m=±
2
时,Smax=
2
点评:(1)平面向量与解析几何的结合通常涉及轨迹等问题的处理,目标是将几何问题坐标化、符号化、数量化,从而将推理转化为运算,或者考虑向量运算的几何意义,利用其几何意义解决有关问题.(2)直线l与点P的轨迹的交点问题,组成方程组解决.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设x,y∈R,i,j为直角坐标平面内x,y轴正方向上的单位向量,若a=(x+1)i+yj,b=(x-1)i+yj,|a|+|b|=4.
(I)求点M(x,y)的轨迹C的方程;
(II)过点(0,m)作直线l与曲线C交于A,B两点,若|
OA
+
OB
|=|
OA
-
OB
|,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设x,y∈R,
i
j
为直角坐标平面内x轴y轴正方向上的单位向量,若
a
=x
i
+(y+2)
j
b
=x
i
+(y-2)
j
,且|
a
|+|
b
|=8
(Ⅰ)求动点M(x,y)的轨迹C的方程;
(Ⅱ)设曲线C上两点AB,满足(1)直线AB过点(0,3),(2)若
OP
=
OA
+
OB
,则OAPB为矩形,试求AB方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

设x,y∈R,
i
j
是直角坐标平面内x,y轴正方向上的单位向量,若
a
=x
i
+(y+3)
j
b
=x
i
+(y-3)
j
|
a
|+|
b
|=6
,则点M(x,y)的轨迹是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设x,y∈R,
i
j
,为直角坐标平面内x轴,y轴正方向上的单位向量,若向量
a
=x
i
+(y+2)
j
b
=x
i
+(y-2)
j
,且|
a
|+|
b
|=8.
(1)求点M(x,y)的轨迹C的方程;
(2)过点(0,3)作直线l与曲线C交于A、B两点.设
OP
=
OA
+
OB
,是否存在这样的直线l,使得四边形OAPB为菱形?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•西山区模拟)设x,y∈R,
i
j
为直角坐标平面内x,y轴正方向上单位向量,若向量
a
=(x+
3
)
i
+y
j
b
=(x-
3
)
i
+y
j
,且|
a
|+|
b
|=2
6

(1)求点M(x,y)的轨迹C的方程;
(2)若直线L与曲线C交于A、B两点,若
OA
OB
=0
,求证直线L与某个定圆E相切,并求出定圆E的方程.

查看答案和解析>>

同步练习册答案