精英家教网 > 高中数学 > 题目详情

【题目】如图,在平行四边形ABCD中,AB=1,BC=2,∠CBA= ,ABEF为直角梯形,BE∥AF,∠BAF= ,BE=2,AF=3,平面ABCD⊥平面ABEF.

(1)求证:AC⊥平面ABEF;
(2)求平面ABCD与平面DEF所成二面角的正弦值.

【答案】
(1)证明:在△ABC中,AB=1,BC=2,∠CBA=

由余弦定理得AC= = =

∴AB2+AC2=BC2,∴AC⊥AB.

∵平面ABCD⊥平面ABEF,平面ABCD∩平面ABEF=AB,AC平面ABCD,

∴AC⊥平面ABEF.


(2)解:以A为原点,AB为x轴,AF为y轴,AC为z轴,建立空间直角坐标系,

D(﹣1,0, ),E(1,2,0),F(0,3,0),

=(2,2,﹣ ), =(1,3,﹣ ),

设平面DEF的法向量 =(x,y,z),

,取x= ,得 =( ,4),

平面ABCD的法向量 =(1,0,0),

设平面ABCD与平面DEF所成二面角的平面角为θ,

则cosθ= =

∴sinθ= =

∴平面ABCD与平面DEF所成二面角的正弦值为


【解析】1、由已知根据余弦定理可求得AC的值,根据勾股定理可知AC⊥AB,由面面垂直的性质定理可得AC⊥平面ABEF。
2、根据题意,建立空间直角坐标系分别求出点D、C的坐标,再求出的坐标,利用向量垂直的坐标公式求出法向量的值,由两个法向量所成的角即为平面ABCD与平面DEF所成二面角的平面角,利用向量的数量积运算可求出cosθ的值,进而得到sinθ的值。
【考点精析】解答此题的关键在于理解直线与平面垂直的判定的相关知识,掌握一条直线与一个平面内的条相交直线都垂直,则该直线与此平面垂直;注意点:a)定理中的“两条相交直线”这一条件不可忽视;b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆C: + =1 (a>b>0 ) 经过点 P(1, ),离心率 e=
(Ⅰ)求椭圆C的标准方程.
(Ⅱ)设过点E(0,﹣2 ) 的直线l 与C相交于P,Q两点,求△OPQ 面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求证:点 P(x0,y0) 到直线AxByC=0的距离为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的函数f(x)满足f(﹣x)=﹣f(x),f(x﹣2)=f(x+2),且x∈(﹣1,0)时, ,则f(log220)=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=3x2﹣2x,数列{an}的前n项和为Sn , 点(n,Sn)(n∈N*)均在函数y=f(x)的图象上.
(1)求数列{an}的通项公式;
(2)设bn= ,Tn是数列{bn}的前n项和,求使得Tn 对所有n∈N*都成立的最小正整数m.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l:4x+3y+10=0,半径为2的圆C与l相切,圆心C在x轴上且在直线l的右上方

(1)求圆C的方程;
(2)过点M(1,0)的直线与圆C交于A,B两点(A在x轴上方),问在x轴正半轴上是否存在定点N,使得x轴平分∠ANB?若存在,请求出点N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+ax﹣lnx,a∈R.
(1)若a=0时,求函数y=f(x)在点(1,f(1))处的切线方程;
(2)若函数f(x)在[1,2]上是减函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=﹣f'(0)ex+2x,点P为曲线y=f(x)在点(0,f(0))处的切线l上的一点,点Q在曲线y=ex上,则|PQ|的最小值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,已知以M为圆心的圆M:x2+y2﹣12x﹣14y+60=0及其上的一点A(2,4).
(Ⅰ)是否存在直线l:y=kx+3与圆M有两个交点B,C,并且|AB|=|AC|,若有,求此直线方程,若没有,请说明理由;
(Ⅱ)设点T(t,0)满足:存在圆M上的两点P和Q,使得 = ,求实数t的取值范围.

查看答案和解析>>

同步练习册答案