精英家教网 > 高中数学 > 题目详情

设x,y∈R+,且xy=1+x+y,则xy的最小值为________.

2+2
分析:先根据均值不等式可知xy≤,代入xy=1+x+y中,转化为关于x+y的一元二次不等式,进而求得x+y的最小值.
解答:∵x,y∈R+,∴xy≤(当且仅当x=y时成立)
∵xy=1+x+y,∴1+x+y≤,解得x+y≥2+2或x+y≤2-2(舍去)
∴x+y的最小值为2+2
故答案为:2+2
点评:本题主要考查了基本不等式在最值问题中的应用.利用基本不等式和整体思想转化为一元二次不等式,再由一元二不等式的解法进行求解,有较强的综合性.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

①设x,y∈R+,且x+y+xy=2,求x+y的最小值.
②设x≥0,y≥0,且x2+y2=4,求xy-4(x+y)-2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设x,y∈R,且x+y=4,则5x+5y的最小值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设x,y∈R+,且x+y=6,则lgx+lgy的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设x,y∈R,且x+y=4,则5x+5y的最小值是
50
50

查看答案和解析>>

科目:高中数学 来源: 题型:

设x,y∈R,且x+4y=40,则lgx+lgy的最大值是(  )

查看答案和解析>>

同步练习册答案