精英家教网 > 高中数学 > 题目详情

已知函数,其中
(1)写出的奇偶性与单调性(不要求证明);
(2)若函数的定义域为,求满足不等式的实数的取值集合;
(3)当时,的值恒为负,求的取值范围.

(1)是在R上的奇函数,且在R上单调递增.(2).(3)

解析试题分析:(1)先由解析式分析定义域为R,再根据奇偶函数的定义由可知是奇函数;(2)函数的定义域为,结合(1)的奇偶性和单调性,可得关于的不等式组,从而求出.(3)由上单调递增,分析要恒负,只要,即,从而求出的取值范围.
试题解析:(1)是在R上的奇函数,且在R上单调递增.
的奇偶性可得,由的定义域及单调性可得,解不等式组可得,即.
由于上单调递增,要恒负,只要,即,又,可得.
考点:1.函数的单调性;2.函数的奇偶性

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知定义域为的函数是奇函数.
(1)求的值
(2)判断并证明的单调性;
(3)若对任意的,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1) 当时,函数恒有意义,求实数a的取值范围;
(2) 是否存在这样的实数a,使得函数在区间上为增函数,并且的最大值为1.如果存在,试求出a的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

扬州某地区要建造一条防洪堤,其横断面为等腰梯形,腰与底边成角为(如图),考虑到防洪堤坚固性及石块用料等因素,设计其横断面要求面积为平方米,且高度不低于米.记防洪堤横断面的腰长为(米),外周长(梯形的上底线段与两腰长的和)为(米).

⑴求关于的函数关系式,并指出其定义域;
⑵要使防洪堤横断面的外周长不超过米,则其腰长应在什么范围内?
⑶当防洪堤的腰长为多少米时,堤的上面与两侧面的水泥用料最省(即断面的外周长最小)?求此时外周长的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数是定义在上的偶函数,且时,,函数的值域为集合.
(I)求的值;
(II)设函数的定义域为集合,若,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

的定义域为 ,值域为,则称函数上的“四维方军”函数.
(1)设上的“四维方军”函数,求常数的值;
(2)问是否存在常数使函数是区间上的“四维方军”函数?若存在,求出的值,否则,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数是定义域为的奇函数.
(Ⅰ)求的值;
(Ⅱ)若,且上的最小值为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(I)若不等式的解集为,求实数的值;
(II)在(I)的条件下,若对一切实数恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

对于函数f(x)(x∈D),若x∈D时,恒有成立,则称函数是D上的J函数.
(Ⅰ)当函数f(x)=mlnx是J函数时,求m的取值范围;
(Ⅱ)若函数g(x)为(0,+∞)上的J函数,
试比较g(a)与g(1)的大小;
求证:对于任意大于1的实数x1,x2,x3, ,xn,均有g(ln(x1+x2+ +xn))
>g(lnx1)+g(lnx2)+ +g(lnxn).

查看答案和解析>>

同步练习册答案