精英家教网 > 高中数学 > 题目详情

已知f(n)=1+n∈N?),g(n)=2(-1)(n∈N?).
(1)当n=1,2,3时,分别比较f(n)与g(n)的大小(直接给出结论);
(2)由(1)猜想f(n)与g(n)的大小关系,并证明你的结论.

(1)当n=1时,f(1)>g(1);当n=2时,f(2)>g(2);当n=3时,f(3)>g(3).(2)f(n)>g(n)(n∈N*),

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

从从1=1,1-4=-(1+2),1-4+9=1+2+3,1-4+9-16=-(1+2+3+4),…,推广到第n个等式为                 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

用反证法证明:已知,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示的多面体中, 是菱形,是矩形,平面

(1)求证:平面平面
(2)若二面角为直二面角,求直线与平面所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

观察下表:
1,
2,3
4,5,6,7
8,9,10,11,12,13,14,15,

问:(1)此表第n行的最后一个数是多少?
(2)此表第n行的各个数之和是多少?
(3)2 008是第几行的第几个数?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

若实数x、y、m满足|x-m|>|y-m|,则称x比y远离m.
(1)若x2-1比1远离0,求x的取值范围;
(2)对任意两个不相等的正数a、b,证明:a3+b3比a2b+ab2远离2ab.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:
①sin213°+cos217°-sin 13°cos 17°;
②sin215°+cos215°-sin 15°cos 15°;
③sin218°+cos212°-sin 18°cos 12°;
④sin2(-18°)+cos248°-sin(-18°)cos 48°;
⑤sin2(-25°)+cos255°-sin(-25°)cos 55°.
(1)试从上述五个式子中选择一个,求出这个常数;
(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知i为虚数单位,a∈R,若(a-1)(a+1+i)=a2-1+(a-1)i是纯虚数,则a的值为( )

A.-1或1B.1C.3D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知下列三个方程:x2+4ax-4a+3=0,x2+(a-1)x+a2=0,x2+2ax-2a=0,其中至少有一个方程有实根,求实数a的取值范围.

查看答案和解析>>

同步练习册答案