【题目】如图,在三棱锥中,平面,,,是中点,是中点,是线段上一动点.
(1)当为中点时,求证:平面平面;
(2)当∥平面时,求.
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为.
(1)求直线与曲线公共点的极坐标;
(2)设过点的直线交曲线于,两点,且的中点为,求直线的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以平面直角坐标系的原点为极点,轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,已知直线的参数方程为,曲线的极坐标方程为
求直线的普通方程与曲线的直角坐标方程;
若把曲线上给点的横坐标伸长为原来的倍,纵坐标伸长为原来的倍,得到曲线,设点是曲线上的一个动点,求它到直线的距离的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《九章算术》中,将四个面都为直角三角形的四面体称为鳖臑,如图,在鳖臑中,平面,,且,过点分别作于点,于点,连接,则三棱锥的体积的最大值为__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,椭圆的参数方程为(为参数),以原点为极点, 轴正半轴为极轴建立极坐标系,直线的极坐标方程为.
(1)求经过椭圆右焦点且与直线垂直的直线的极坐标方程;
(2)若为椭圆上任意-点,当点到直线距离最小时,求点的直角坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,椭圆的参数方程为(为参数),以原点为极点, 轴正半轴为极轴建立极坐标系,直线的极坐标方程为.
(1)求经过椭圆右焦点且与直线垂直的直线的极坐标方程;
(2)若为椭圆上任意-点,当点到直线距离最小时,求点的直角坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,曲线C的参数方程为:(为参数,已知直线,直线以坐标原点为极点,x轴正半轴为极轴,建立极坐标系.
(1)求曲线C以及直线,的极坐标方程;
(2)若直线与曲线C分别交于O、A两点,直线与曲线C分别交于O、B两点,求的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com