Ñ¡ÐÞ4-4×ø±êϵÓë²ÎÊý·½³Ì
ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬È¡Ô­µãΪ¼«µãxÖáÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÒÑÖªÇúÏßC1µÄ¼«×ø±ê·½³ÌΪ£º¦Ñ=2cos¦È£¬Ö±ÏßC2µÄ²ÎÊý·½³ÌΪ£º£¨tΪ²ÎÊý£©
£¨I £©ÇóÇúÏßC1µÄÖ±½Ç×ø±ê·½³Ì£¬ÇúÏßC2µÄÆÕͨ·½³Ì£®
£¨II£©ÏȽ«ÇúÏßC1ÉÏËùÓеĵãÏò×óƽÒÆ1¸öµ¥Î»³¤¶È£¬ÔÙ°ÑͼÏóÉÏËùÓеãµÄºá×ø±êÉ쳤µ½Ô­À´µÄ±¶µÃµ½ÇúÏßC3£¬PΪÇúÏßC3ÉÏÒ»¶¯µã£¬ÇóµãPµ½Ö±ÏßC2µÄ¾àÀëµÄ×îСֵ£¬²¢Çó³öÏàÓ¦µÄPµãµÄ×ø±ê£®
¡¾´ð°¸¡¿·ÖÎö£º£¨I£© ÀûÓÃÖ±½Ç×ø±êÓ뼫×ø±ê¼äµÄ¹Øϵ£¬¼´ÀûÓæÑcos¦È=x£¬¦Ñsin¦È=y£¬¦Ñ2=x2+y2£¬½øÐдú»»¼´µÃC1Ϊֱ½Ç×ø±ê·½³Ì£»ÏûÈ¥²ÎÊýtµÃÇúÏßC2µÄÆÕͨ·½³Ì
£¨II£©ÇúÏßC3Éϵķ½³ÌΪ=1£¬ÉèµãP£¨£¬sin¦È£©£¬µãPµ½Ö±ÏߵľàÀëΪd==£¬ÀûÓÃÈý½Çº¯ÊýµÄÐÔÖÊÇó½â£®
½â´ð£º½â£º£¨I £©C1µÄ¼«×ø±ê·½³ÌΪ£º¦Ñ=2cos¦È£¬¼´£º¦Ñ2=2¦Ñcos¦È£¬
»¯ÎªÖ±½Ç×ø±ê·½³ÌΪx2+y2=2x£¬¼´Îª£¨x-1£©2+y2=1
Ö±ÏßC2µÄ²ÎÊý·½³ÌΪ£º£¨tΪ²ÎÊý£©£¬
ÏûÈ¥tµÃÆÕͨ·½³ÌΪx-y+4=0
£¨II£©ÇúÏßC3Éϵķ½³ÌΪ=1
ÉèµãP£¨£¬sin¦È£©£¬µãPµ½Ö±ÏߵľàÀëΪd==
ÓÉÈý½Çº¯ÊýµÄÐÔÖÊÖª£¬µ±=¦ÐÊÇ£¬dÈ¡µÃ×îСֵ£¬´Ëʱ£¬
ËùÒÔPµãµÄ×ø±êΪ£¨£©
µãÆÀ£º±¾Ì⿼²éÁ˼«×ø±êºÍÖ±½Ç×ø±êµÄ»¥»¯¼°²ÎÊý·½³ÌÓëÆÕͨ·½³ÌµÄ»¥»¯£¬ÄÜÔÚÖ±½Ç×ø±êϵÖÐÀûÓÃÈý½Çº¯ÊýµÄÐÔÖÊÇó³ö×îÖµ£¬ÊôÓÚ»ù´¡Ì⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Ñ¡ÐÞ4-4£º×ø±êϵÓë²ÎÊý·½³Ì
ÒÑÖªÔÚƽÃæÖ±½Ç×ø±êϵxOyÄÚ£¬µãP£¨x£¬y£©ÔÚÇúÏßC£º
x=1+cos¦È
y=sin¦È
(¦È
Ϊ²ÎÊý£¬¦È¡ÊR£©ÉÏÔ˶¯£®ÒÔOxΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬Ö±ÏßlµÄ¼«×ø±ê·½³ÌΪ¦Ñcos(¦È+
¦Ð
4
)=0
£®
£¨¢ñ£©Ð´³öÇúÏßCµÄ±ê×¼·½³ÌºÍÖ±ÏßlµÄÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©ÈôÖ±ÏßlÓëÇúÏßCÏཻÓÚA¡¢BÁ½µã£¬µãMÔÚÇúÏßCÉÏÒƶ¯£¬ÊÔÇó¡÷ABMÃæ»ýµÄ×î´óÖµ£¬²¢Çó´ËʱMµãµÄ×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨Ñ¡ÐÞ4-4£º×ø±êϵÓë²ÎÊý·½³Ì£©
ÔÚƽÃæÖ±½Ç×ø±êϵxoyÖУ¬¹ýÍÖÔ²
x2
12
+
y2
4
=1
ÔÚµÚÒ»ÏóÏÞÄÚµÄÒ»µãP£¨x£¬y£©·Ö±ð×÷xÖá¡¢yÖáµÄÁ½Ìõ´¹Ïߣ¬´¹×ã·Ö±ðΪM£¬N£¬Çó¾ØÐÎPMONÖܳ¤×î´óֵʱµãPµÄ×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

±¾Ì⣨1£©£¨2£©£¨3£©Èý¸öÑ¡´ðÌ⣬ÿСÌâ5·Ö£¬Ç뿼ÉúÈÎÑ¡1Ìâ×÷´ð£¬Èç¹û¶à×ö£¬Ôò°´Ëù×öµÄÇ°1Ìâ¼Æ·Ö£®
£¨1£©£¨Ñ¡ÐÞ4-1£¬¼¸ºÎÖ¤Ã÷Ñ¡½²£©Èçͼ£¬ÔÚÖ±½ÇÌÝÐÎABCDÖУ¬DC¡ÎAB£¬CB¡ÍAB£¬AB=AD=a£¬CD=
a
2
£¬µãE£¬F·Ö±ðΪÏ߶ÎAB£¬CDµÄÖе㣬ÔòEF=
a
2
a
2
£®
£¨2£©£¨Ñ¡ÐÞ4-4£¬×ø±êϵÓë²ÎÊý·½³Ì£©ÔÚ¼«×ø±êϵ£¨¦Ñ£¬¦È£©£¨0¡Ü¦È¡Ü2¦Ð£©ÖУ¬ÇúÏߦÑ=2sin¦ÈÓë¦Ñcos¦È=-1µÄ½»µãµÄ¼«×ø±êΪ
£¨
2
£¬
3¦Ð
4
£©
£¨
2
£¬
3¦Ð
4
£©
£®
£¨3£©£¨Ñ¡ÐÞ4-1£¬²»µÈʽѡ½²£©ÒÑÖªº¯Êýf£¨x£©=|x-a|£®Èô²»µÈʽf£¨x£©¡Ü3µÄ½â¼¯Îª{x|-1¡Üx¡Ü5}£¬ÔòʵÊýaµÄֵΪ
a=2
a=2
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Ñ¡ÐÞ4-4£º×ø±êϵÓë²ÎÊý·½³ÌÑ¡½²£®
ÔÚ¼«×ø±êϵÖУ¬OΪ¼«µã£¬°ë¾¶Îª2µÄÔ²CµÄÔ²Ðĵļ«×ø±êΪ£¨2£¬
¦Ð
3
£©£®
£¨1£©ÇóÔ²CµÄ¼«×ø±ê·½³Ì£»
£¨2£©ÔÚÒÔ¼«µãOΪԭµã£¬ÒÔ¼«ÖáΪxÖáÕý°ëÖὨÁ¢µÄÖ±½Ç×ø±êϵÖУ¬Ö±Ïßl£¨3£©µÄ²ÎÊý·½³ÌΪ
x=1+
1
2
t
y=-2+
3
2
t
£¨tΪ²ÎÊý£©£¬Ö±ÏßlÓëÔ²CÏཻÓÚA£¬BÁ½µã£¬ÒÑÖª¶¨µãM£¨1£¬-2£©£¬Çó|MA|•|MB|£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•ºþ±±£©£¨Ñ¡ÐÞ4-4£º×ø±êϵÓë²ÎÊý·½³Ì£©
ÔÚÖ±½Ç×ø±êϵxOyÖУ¬ÍÖÔ²CµÄ²ÎÊý·½³ÌΪ
x=acos¦Õ
y=bsin¦Õ
(¦Õ
Ϊ²ÎÊý£¬a£¾b£¾0£©£®ÔÚ¼«×ø±êϵ£¨ÓëÖ±½Ç×ø±êϵxOyÈ¡ÏàͬµÄ³¤¶Èµ¥Î»£¬ÇÒÒÔÔ­µãOΪ¼«µã£¬ÒÔxÖáÕý°ëÖáΪ¼«ÖᣩÖУ¬Ö±ÏßlÓëÔ²OµÄ¼«×ø±ê·½³Ì·Ö±ðΪ¦Ñsin(¦È+
¦Ð
4
)=
2
2
m(m
Ϊ·ÇÁã³£Êý£©Óë¦Ñ=b£®ÈôÖ±Ïßl¾­¹ýÍÖÔ²CµÄ½¹µã£¬ÇÒÓëÔ²OÏàÇУ¬ÔòÍÖÔ²CµÄÀëÐÄÂÊΪ
6
3
6
3
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸