精英家教网 > 高中数学 > 题目详情

如图,已知平面
的中点,.
(1)求证:平面
(2)求证:平面平面
(3)求此多面体的体积.

(1)详见解析;(2)详见解析;(3).

解析试题分析:(1)取的中点,连结,利用中位线证明,利用题中条件得到,进而得到,于是说明四边形为平行四边形,得到,最后利用直线与平面平行的判定定理证明平面;(2)由平面 得到,再利用等腰三角形三线合一得到,利用直线与平面垂直的判定定理证明平面,结合(1)中的结论证明平面,最后利用平面与平面垂直的判定定理证明平面平面;(3)利用已知条件得到平面平面,然后利用平面与平面垂直的性质定理求出椎体的高,最后利用椎体的体积公式计算该几何体的体积.
(1)取中点,连结的中点, ,且
,且 ,且
为平行四边形,
平面平面平面
(2),所以为正三角形,
平面平面,又平面
,又
平面,又平面
平面平面平面
(3)此多面体是一个以为定点,以四边形为底边的四棱锥,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

“因为四边形ABCD是菱形,所以四边形ABCD的对角线互相垂直”,补充以上推理的大前提是               
1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥的底面为一直角梯形,侧面PAD是等边三角形,其中,平面底面的中点.

(1)求证://平面
(2)求证:
(3)求三棱锥的体积

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,多面体的直观图及三视图如图所示,分别为的中点.
(1)求证:平面
(2)求多面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
底面边长为2的正三棱锥,其表面展开图是三角形,如图,求△的各边长及此三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知某几何体的俯视图是如图所示的矩形,正视图是一个底边长为8,高为4的等腰三角形,侧视图(或称左视图)是一个底边长为6,高为4的等腰三角形.
(1)求该几何体的体积V;
(2)求该几何体的侧面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱锥中,°,平面平面分别为中点.
(1)求证:∥平面
(2)求证:
(3)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱锥中,底面,且
的中点,且交于点.
(1)求证:平面
(2)当时,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

圆锥PO如图1所示,图2是它的正(主)视图.已知圆O的直径为AB,C是圆周上异于A,B的一点,D为AC的中点.

(1)求该圆锥的侧面积S;
(2)求证:平面PAC平面POD;
(3)若,在三棱锥A-PBC中,求点A到平面PBC的距离.

查看答案和解析>>

同步练习册答案