精英家教网 > 高中数学 > 题目详情

【题目】已知四边形ABCD为矩形,AB=2AD=4MAB的中点,将△ADM沿DM折起,得到四棱锥A1DMBC,设A1C的中点为N,在翻折过程中,得到如下有三个命题:BN∥平面A1DM;②三棱锥NDMC的最大体积为;③在翻折过程中,存在某个位置,使得DMA1C.其中正确命题的序号为_____.

【答案】①②

【解析】

分别延长DMCB交于H,连接A1H,可证BCH的中点,因此有BNA1H,可得①为正确;要使三棱锥NDMC的体积最大,只需N到平面DMBC的距离最大,当平面A1DM⊥平面DMBC时满足,可求得此时体积为,②正确;DM=CM=2CD=4

可得DMMC,若DMA1C,可证DMA1M,与已知DM为斜边矛盾,③错误.

对于①,分别延长DMCB交于H,连接A1H,如图所示;

由已知得,可得BCH的中点,

可得BN为△A1CH的中位线,可得BNA1H

BN平面A1DMA1H平面A1DM

可得BN∥平面A1DM∴①正确;

对于②,当平面A1DM⊥平面DMBC时,

A1到平面DMBC的距离最大,且为

此时N到平面DMBC的距离最大,且为

DMC的面积为2×4=4

可得三棱锥NDMC的最大体积为4

∴②正确;

对于③,若DMA1C,又DM=CM=2CD=4

可得DMMC,则DM⊥平面A1CM,即有DMA1M

这与DM为斜边矛盾,∴③错误;

综上,以上正确命题的序号为①②.

故答案为:①②.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在下列向量组中,可以把向量=(3,2)表示出来的是(   )

A. =(0,0),=(1,2)B. =(-1,2),=(5,-2)

C. =(3,5),=(6,10)D. =(2,-3),=(-2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数的定义域为,如果存在非零常数,对于任意,都有,则称函数似周期函数,非零常数为函数似周期.现有下面四个关于似周期函数的命题:

如果似周期函数似周期-1,那么它是周期为2的周期函数;

函数似周期函数

函数似周期函数

如果函数似周期函数,那么

其中是真命题的序号是 .(写出所有满足条件的命题序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是数列的前项和,对任意都有成立(其中是常数).

1)当时,求

2)当时,

①若,求数列的通项公式:

②设数列中任意(不同)两项之和仍是该数列中的一项,则称该数列是数列,如果,试问:是否存在数列数列,使得对任意,都有,且,若存在,求数列的首项的所有取值构成的集合;若不存在.说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方体中,若点(异于点)是棱上一点,则满足所成的角为的点的个数为( )

A.0B.3C.4D.6

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C的参数方程为(t为参数),以原点O为极点,x轴的非负半轴为极轴建立极坐标系,过极点的两直线l1l2相互垂直,与曲线C分别相交于AB两点(不同于点O),且l1的倾斜角为.

1)求曲线C的极坐标方程和直线l2的直角坐标方程;

2)求△OAB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(数学文卷·2017届重庆十一中高三12月月考第16题) 现介绍祖暅原理求球体体积公式的做法:可构造一个底面半径和高都与球半径相等的圆柱,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥,用这样一个几何体与半球应用祖暅原理(图1),即可求得球的体积公式.请研究和理解球的体积公式求法的基础上,解答以下问题:已知椭圆的标准方程为 ,将此椭圆绕y轴旋转一周后,得一橄榄状的几何体(图2),其体积等于______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】高铁是我国国家名片之一,高铁的修建凝聚着中国人的智慧与汗水.如图所示,BEF为山脚两侧共线的三点,在山顶A处测得这三点的俯角分别为,计划沿直线BF开通穿山隧道,现已测得BCDEEF三段线段的长度分别为312.

(1)求出线段AE的长度;

(2)求出隧道CD的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义上的函数,若满足:对任意,存在常数,都有成立,则称上的有界函数,其中称为函数的上界.

(1)设,判断上是否有界函数,若是,请说明理由,并写出的所有上界的值的集合,若不是,也请说明理由;

(2)若函数上是以3为上界的有界函数,求实数的取值范围.

查看答案和解析>>

同步练习册答案