精英家教网 > 高中数学 > 题目详情

【题目】类比平面内正三角形的“三边相等,三内角相等”的性质,可推出正四面体的下列性质,你认为比较恰当的是(  )

①各棱长相等,同一顶点上的任两条棱的夹角都相等;

②各个面都是全等的正三角形,相邻两个面所成的二面角都相等;

③各面都是面积相等的三角形,同一顶点上的任两条棱的夹角都相等.

A. B. C. ①②③D.

【答案】C

【解析】

类比正三角形的性质,结合正四面体的几何特征,依次分析答案,即可。

正四面体中,各棱长相等,各侧面是全等的等边三角形,因此,同一顶点上的任两条棱的夹角都相等;①正确;

对于②,正四面体中,各个面都是全等的正三角形,相邻两个面所成的二面角中,它们有共同的高,底面三角形的中心到对棱的距离相等,

相邻两个面所成的二面角都相等,②正确;

对于③,各个面都是全等的正三角形,

各面都是面积相等的三角形,同一顶点上的任两条棱的夹角都相等,③正确.

①②③都是合理、恰当的.

故选:C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-5:不等式选讲

已知函数.

(1)当时,解关于的不等式

(2)若对任意,都存在,使得不等式成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】质检部门从某超市销售的甲、乙两种食用油中分别随机抽取100桶检测某项质量指标,由检测结果得到如图的频率分布直方图:

(I)写出频率分布直方图(甲)中的值;记甲、乙两种食用油100桶样本的质量指标的方差分别为,试比较的大小(只要求写出答案);

(Ⅱ)佑计在甲、乙两种食用油中各随机抽取1桶,恰有一个桶的质量指标大于20,且另—个桶的质量指标不大于20的概率;

(Ⅲ)由频率分布直方图可以认为,乙种食用油的质量指标值服从正态分布.其中近似为样本平均数近似为样本方差,设表示从乙种食用油中随机抽取10桶,其质量指标值位于(14.55, 38.45)的桶数,求的数学期望.

注:①同一组数据用该区间的中点值作代表,计算得

②若,则.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某保险公司拟推出某种意外伤害险,每位参保人交付元参保费,出险时可获得万元的赔付,已知一年中的出险率为,现有人参保.

1)求保险公司获利在(单位:万元)范围内的概率(结果保留小数点后三位);

2)求保险公司亏本的概率.(结果保留小数点后三位)

附:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

1)求证:恒成立;

2)试求的单调区间;

3)若,且,其中,求证:恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1若曲线处的切线方程为,求实数的值;

2,若对任意两个不等的正数,都有恒成立,求实数的取值范围;

3若在上存在一点,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60)[60,70)[70,80)[80,90)[90,100]

(1)求图中a的值;

(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;

(3)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如下表所示,求数学成绩在[50,90)之外的人数.

分数段

[50,60)

[60,70)

[70,80)

[80,90)

xy

11

21

34

45

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求的单调区间;

(2)求的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,抛物线与椭圆在第一线象限的交点为

1)求曲线的方程;

2)在抛物线上任取一点,在点处作抛物线的切线,若椭圆上存在两点关于直线对称,求点的纵坐标的取值范围.

查看答案和解析>>

同步练习册答案