精英家教网 > 高中数学 > 题目详情

【题目】某高校在2016年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,得到的频率分布表如下表所示.

组号

分组

频数

频率

1

5

0.050

2

n

0.350

3

30

p

4

20

0.200

5

10

0.100

合计

100

1.000

(1)求频率分布表中np的值,并估计该组数据的中位数(保留l位小数);

(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第345组中用分层抽样的方法抽取6名学生进入第二轮面试,则第345组每组各抽取多少名学生进入第二轮面试?

(3)在(2)的前提下,学校决定从6名学生中随机抽取2名学生接受甲考官的面试,求第4组至少有1名学生被甲考官面试的概率.

【答案】(1),中位数估计值为171.7(2)第345组每组各抽学生人数为321(3)

【解析】

(1)由频率分布表可得:,由中位数的求法可得中位数估计值为171.7;

(2)因为笔试成绩高的第3、4、5组的人数之比为,由分层抽样的方法选6名学生,三个小组分别选的人数为3、2、1

(3)先列举出从6名学生中随机抽取2名学生的不同取法,再列举出第4组至少有1名学生被甲考官面试的取法,再结合古典概型的概率公式即可得解.

解:(1)由已知:

,中位数为171.7,

即中位数估计值为171.7,

(2)由已知,笔试成绩高的第3、4、5组的人数之比为,现用分层抽样的方法选6名学生。故第3、4、5组每组各抽学生人数为3、2、1

(3)在(2)的前提下,记第3组的3名学生为

第4组的2名学生为,第5组的1名学生为,且“第4组至少有1名学生被甲考官面试”为事件A

则所有的基本事件有:,一共15种。

A事件有:,一共9种。

答:第4组至少有1名学生被甲考官面试的概率为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)||,实数mn满足0mn,且f(m)f(n),若f(x)[m2n]上的最大值为2,则________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法错误的是( )

A.命题“若,则”的逆否命题是“若,则

B.”是“”的充分不必要条件

C.为假命题,则均为假命题

D.命题:“,使得”,则非:“

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,已知直线l的参数方程为:为参数点的极坐标为,曲线C的极坐标方程为

试将曲线C的极坐标方程化为直角坐标方程,并求曲线C的焦点在直角坐标系下的坐标;

设直线l与曲线C相交于两点AB,点MAB的中点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}为等比数列,a1=2,公比q>0,且a2,6,a3成等差数列.

(1)求数列{an}的通项公式;

(2)设bn=log2an,求使的n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,已知D是边AC上一点,将沿BD折起,得到三棱锥.若该三棱锥的顶点A在底面BCD的射影M在线段BC上,设,则x的取值范围为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为践行“绿水青山就是金山银山”的发展理念,某城区对辖区内三类行业共200个单位的生态环境治理成效进行了考核评估,考评分数达到80分及其以上的单位被称为“星级”环保单位,未达到80分的单位被称为“非星级”环保单位.现通过分层抽样的方法获得了这三类行业的20个单位,其考评分数如下:

类行业:858277788387

类行业:766780857981

类行业:8789768675849082

(Ⅰ)计算该城区这三类行业中每类行业的单位个数;

(Ⅱ)若从抽取的类行业这6个单位中,再随机选取3个单位进行某项调查,求选出的这3个单位中既有“星级”环保单位,又有“非星级”环保单位的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,命题p:函数内单调递增;q:函数仅在处有极值.

1)若命题q是真命题,求a的取值范围;

2)若命题是真命题,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)证明:函数在区间存在唯一的极小值点,且

(2)证明:函数有且仅有两个零点.

查看答案和解析>>

同步练习册答案