精英家教网 > 高中数学 > 题目详情
在锐角△ABC中,a、b、c分别为角A、B、C所对的边,且
a
sinA
=
2c
3

(Ⅰ) 确定角C的大小;
(Ⅱ)若c=
7
,且△ABC的面积为
3
3
2
,求a2+b2的值.
分析:(Ⅰ)根据
a
sinA
=
2c
3
,利用正弦定理得
a
sinA
=
c
sinC
=
2c
3
,从而可求C的大小;
(Ⅱ)由面积公式得
1
2
absin
π
3
=
3
3
2
,从而可得ab=6,由余弦定理,可得结论.
解答:解:(Ⅰ)∵
a
sinA
=
2c
3
,∴由正弦定理得
a
sinA
=
c
sinC
=
2c
3
  …(2分)
∴sinC=
3
2
                                    …(4分)
∵△ABC是锐角三角形,∴C=
π
3
                     …(6分)
(Ⅱ)∵c=
7
,C=
π
3
,△ABC的面积为
3
3
2
,∴由面积公式得
1
2
absin
π
3
=
3
3
2
   …(8分)
∴ab=6                                        …(9分)
由余弦定理得a2+b2-2abcos
π
3
=7                     …(11分)
∴a2+b2=13                                 …(12分)
点评:本题考查正弦、余弦定理,考查学生的计算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
m
=(sinx,-1)
n
=(cosx,3)

(1)设函数f(x)=(
m
+
n
)•
m
,求函数f(x)的单调递增区间;
(2)已知在锐角△ABC中,a,b,c分别为角A,B,C的对边,
3
c=2asin(A+B)
,对于(1)中的函数f(x),求f(B+
π
8
)
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在锐角△ABC中,A、B、C三内角所对的边分别为a、b、c,cos2A+
1
2
=sin2A,a=
7

(1)若b=3,求c;
(2)求△ABC的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•奉贤区二模)在锐角△ABC中,a、b、c分别是三内角A、B、C所对的边,若a=3,b=4,且△ABC的面积为3
3
,则角C=
π
3
π
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•武汉模拟)在锐角△ABC中,A>B,则有下列不等式:①sinA>sinB;②cosA<cosB;③sin2A>sin2B;④cos2A<cos2B(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2005•武汉模拟)在锐角△ABC中,a、b、c分别为角A、B、C所对的边,又c=
21
,b=4,且BC边上高h=2
3

①求角C;
②a边之长.

查看答案和解析>>

同步练习册答案