精英家教网 > 高中数学 > 题目详情

【题目】如图,在平面直角坐标系xOy中,已知椭圆的离心率为,右焦点F到右准线的距离为3

1)求椭圆C的标准方程;

2)设过F的直线l与椭圆C相交于PQ两点.已知l被圆Ox2+y2a2截得的弦长为,求OPQ的面积.

【答案】11;(2

【解析】

1)由题可得,,再由可求得,即可得到椭圆方程;

2)显然直线的斜率不为0,设直线l的方程为xmy+1,与椭圆方程联立,则利用韦达定理可得的纵坐标的关系,再根据弦长公式求得,由直线截圆的弦长求得,进而求解即可.

1)由题意知,,

因为,解得a24,b23,

所以椭圆的方程为:1

2)由题意知直线l的斜率不为0,由(1)知F1,0),

设直线l的方程为xmy+1,Px,y),Qx',y'),

联立直线l与椭圆的方程整理得(4+3m2y2+6my90,

所以y+y',yy',

所以|PQ|,

因为圆O:x2+y24l的距离d,被圆O:x2+y24截得的弦长为,

所以得1444),解得m21,

所以d,|PQ|,

所以SOPQ.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某种大型医疗检查机器生产商,对一次性购买2台机器的客户,推出两种超过质保期后两年内的延保维修优惠方案:方案一:交纳延保金7000元,在延保的两年内可免费维修2次,超过2次每次收取维修费2000元;方案二:交纳延保金10000元,在延保的两年内可免费维修4次,超过4次每次收取维修费1000元.某医院准备一次性购买2台这种机器。现需决策在购买机器时应购买哪种延保方案,为此搜集并整理了50台这种机器超过质保期后延保两年内维修的次数,得下表:

维修次数

0

1

2

3

台数

5

10

20

15

以这50台机器维修次数的频率代替1台机器维修次数发生的概率,记X表示这2台机器超过质保期后延保的两年内共需维修的次数。

(1)求X的分布列;

(2)以所需延保金及维修费用的期望值为决策依据,医院选择哪种延保方案更合算?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

(1)求函数的极值;

(2),对于任意,总有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某保险公司的某险种的基本保费为(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:

上年度出险次数

0

1

2

3

≥4

保费(元)

随机调查了该险种的名续保人在一年内的出险情况,得到下表:

出险次数

0

1

2

3

≥4

频数

280

80

24

12

4

该保险公司这种保险的赔付规定如下:

出险序次

1

2

3

4

5次及以上

赔付金额(元)

将所抽样本的频率视为概率.

1)求本年度续保人保费的平均值的估计值;

2)按保险合同规定,若续保人在本年度内出险次,则可获得赔付元;依此类推,求本年度续保人所获赔付金额的平均值的估计值;

3)续保人原定约了保险公司的销售人员在上午之间上门签合同,因为续保人临时有事,外出的时间在上午之间,请问续保人在离开前见到销售人员的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,曲线的参数方程为.

1)写出曲线的直角坐标方程与曲线的普通方程;

2)若射线)与曲线分别交于两点(不是原点),求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆C)的上顶点为,离心率为.

1)求椭圆C的方程;

2)若过点A作圆(圆在椭圆C内)的两条切线分别与椭圆C相交于BD两点(BD不同于点A),当r变化时,试问直线BD是否过某个定点?若是,求出该定点;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】低碳经济时代,文化和旅游两大产业逐渐成为我国优先发展的“绿色朝阳产业”.为了解某市的旅游业发展情况,某研究机构对该市2019年游客的消费情况进行随机调查,得到频数分布表及频率分布直方图.

旅游消费(千元)

频数(人)

10

60

1)由图表中数据,求的值及游客人均消费估计值(同一组中的数据以这组数据所在区间中点的值为代表)

2)该机构利用最小二乘法得到20132017年该市的年旅游人次(千万人次)与年份代码的线性回归模型:.

注:年份代码15分别对应年份20132017

①试求20132017年的年旅游人次的平均值;

②据统计,2018年该市的年旅游人次为9千万人次.建立20132018年该市年旅游人次(千万人次)与年份代码的线性回归方程,并估计2019年该市的年旅游收入.

注:年旅游收入=年旅游人次×人均消费

参考数据:.参考公式:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班AB两名学生六次数学测验成绩(百分制)如图所示:

A同学成绩的中位数大于B同学成绩的中位数;

A同学的平均分比B同学高;

A同学的平均分比B同学低;

A同学成绩方差小于B同学的方差,

以上说法中正确的是(

A.③④B.①②④C.②④D.①③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,倾斜角为的直线的参数方程为(其中为参数).在以为极点、轴的非负半轴为极轴的极坐标系(两种坐标系的单位长度相同)中,曲线的焦点的极坐标为.

1)求常数的值;

2)设交于两点,且,求的大小.

查看答案和解析>>

同步练习册答案