【题目】某家具厂生产一种课桌,每张课桌的成本为50元,出厂单价定为80元,该厂为鼓励销售商多订购,决定一次订购量超过100张时,每超过一张,这批订购的全部课桌出厂单价降低0.02元.根据市场调查,销售商一次订购量不会超过1000张.
(1)设一次订购量为x张,课桌的实际出厂单价为P元,求P关于x的函数关系式P(x);
(2)当一次订购量x为多少时,该家具厂这次销售课桌所获得的利润f(x)最大?其最大利润是多少元?(家具厂售出一张课桌的利润=实际出厂单价﹣成本).
【答案】
(1)解:根据题意得:P(x)= ;
即P(x)=
(2)解:由(1)得f(x)=
即f(x)=
(ⅰ)当0<x≤100,
则x=100时,f(x)max=f(100)=3000)
(ⅱ)当100<x≤1000,
则x=800时,f(x)max=f(800)=32×800﹣0.02×8002=12800
∵12800>3000,
∴x=800时,f(x)有最大值,其最大值为12800元.
答:当一次订购量为800张时,该家具厂在这次订购中所获得的利润最大,其最大利润是12800元
【解析】(1)当0<x≤100时,P=80;当100<x≤1000时,P=80﹣0.02(x﹣100),由此可得分段函数;(2)利用工厂售出一个零件的利润=实际出厂单价﹣成本,即可求出当销售商一次订购了800个零件时,该厂获得的利润.
科目:高中数学 来源: 题型:
【题目】某班主任对全班50名学生学习积极性和对待班级工作的态度进行了调查,统计数据如下表所示:
积极参加班级工作 | 不太主动参加班级工作 | 合计 | |
学习积极性高 | 18 | 7 | 25 |
学习积极性一般 | 6 | 19 | 25 |
合计 | 24 | 26 | 50 |
参考公式及数据:
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
(1)如果随机抽查这个班的一名学生,那么抽到积极参加班级工作的学生的概率是多少?抽到不太主动参加班级工作且学习积极性一般的学生的概率是多少?
(2)试运用独立性检验的思想方法分析:学生的学习积极性与对待班级工作的态度是否有关系?并说明理由?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合A={x|1<x<3},集合B={x|2m<x<1-m}.
(1)当m=-1时,求A∪B;
(2)若AB,求实数m的取值范围;
(3)若A∩B=,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知D,E,F分别为△ABC的边BC,CA,AB的中点,记 =a , =b.则下列命题中正确的个数是( )
① = a-b;② =a+ b;③ = a+ b;④ 0.
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某超市五一假期举行促销活动,规定一次购物不超过100元的不给优惠;超过100元而不超过300元时,按该次购物全额9折优惠;超过300元的其中300 元仍按9折优惠,超过部分按8折优惠.
(1)写出顾客购物全额与应付金额之间的函数关系,并画出流程图,要求输入购物全额,能输出应付金额.
(2)若某顾客的应付金额为282.8元,请求出他的购物全额.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)=ax2+2(a﹣3)x+1在区间[﹣2,+∞)上递减,则实数a的取值范围是( )
A.(﹣∞,﹣3]
B.[﹣3,0]
C.[﹣3,0)
D.[﹣2,0]
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com