精英家教网 > 高中数学 > 题目详情
已知以F1(-2,0),F2(2,0)为焦点的椭圆与直线x+
3
y+4=0有且仅有一个交点,则椭圆的长轴长为(  )
A、3
2
B、2
6
C、2
7
D、4
2
分析:由题设条件可以求出椭圆的方程是
x2
a2
+
y2
a2-4
=1.再把椭圆和直线联立方程组,由要根的判别式△=0能够求出a的值,从而能够求出椭圆的长轴长.
解答:解:设椭圆长轴长为2a(且a>2),则椭圆方程为
x2
a2
+
y2
a2-4
=1.
由,
x2
a2
+
y2
a2-4
=1
x+
3
y+4=0
得(4a2-12)y2+8
3
(a2-4)y+(16-a2)(a2-4)=0.
∵直线与椭圆只有一个交点,∴△=0,即192(a2-4)2-16(a2-3)×(16-a2)×(a2-4)=0.
解得a=0(舍去),a=2(舍去),a=
7
.∴长轴长2a=2
7
.故选C.
点评:本题考查椭圆的基本知识及其应用,解题时要注意a>2这个前提条件,不要产生增根.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(理)已知以F1(-2,0),F2(2,0)为焦点的椭圆与直线x+y+4=0有且仅有一个公共点,则椭圆的长轴长为
2
10
2
10

查看答案和解析>>

科目:高中数学 来源:2011-2012学年山东省济宁市曲阜一中高三(上)第一次摸底考试数学试卷(理科)(解析版) 题型:选择题

已知以F1(-2,0),F2(2,0)为焦点的椭圆与直线x+y+4=0有且仅有一个交点,则椭圆的长轴长为( )
A.3
B.2
C.2
D.4

查看答案和解析>>

科目:高中数学 来源:2011-2012学年湖北省荆州中学高三第一次质量检查数学试卷(理科)(解析版) 题型:选择题

已知以F1(-2,0),F2(2,0)为焦点的椭圆与直线x+y+4=0有且仅有一个交点,则椭圆的长轴长为( )
A.3
B.2
C.2
D.4

查看答案和解析>>

科目:高中数学 来源:《第2章 圆锥曲线与方程》2010年单元测试卷(5)(解析版) 题型:选择题

已知以F1(-2,0),F2(2,0)为焦点的椭圆与直线x+y+4=0有且仅有一个交点,则椭圆的长轴长为( )
A.3
B.2
C.2
D.4

查看答案和解析>>

同步练习册答案