精英家教网 > 高中数学 > 题目详情

【题目】已知函数的部分图像如图所示,考查下列说法:

的图像关于直线对称

的图像关于点对称

③若关于x的方程在上有两个不相等的实数根,则实数的取值范围为

④将函数的图像向右平移个单位可得到函数的图像

其中正确个数的是(

A.0B.1C.2D.3

【答案】C

【解析】

先由三角函数的图像可得函数解析式为再分别求函数的对称轴方程,对称中心,结合函数的单调性求值域,然后由函数图像的平移变换逐一判断各选项即可得解.

解:不妨设

由图可知,,即,即

,即

,则

即函数的对称轴方程为,显然选项A错误;

,则

即函数的对称中心为,显然选项B错误;

由函数的图像可得:函数为减函数,在为增函数,

即关于x的方程上有两个不相等的实数根,则实数的取值范围为,即选项C正确;

,即将函数的图像向右平移个单位可得到函数的图像,故选项D正确,

综上可得正确个数的是2个,

故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】手机厂商推出一款6寸大屏手机,现对500名该手机使用者(200名女性,300名男性)进行调查,对手机进行评分,评分的频数分布表如下:

女性用户

分值区间

[5060

[6070

[7080

[8090

[90100]

频数

20

40

80

50

10

男性用户

分值区间

[5060

[6070

[7080

[8090

[90100]

频数

45

75

90

60

30

(1)完成下列频率分布直方图,并比较女性用户和男性用户评分的波动大小(不计算具体值,给出结论即可);

(2)把评分不低于70分的用户称为评分良好用户,能否有的把握认为评分良好用户与性别有关?

参考附表:

参考公式,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=x|x-a|+bxabR).

(Ⅰ)当b=-1时,函数fx)恰有两个不同的零点,求实数a的值;

(Ⅱ)当b=1时,

①若对于任意x∈[1,3],恒有fx)≤2x2,求a的取值范围;

②若a≥2,求函数fx)在区间[0,2]上的最大值ga).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某宾馆有50个房间供游客居住,当每个房间定价为每天180元时,房间会全部住满;房间单价增加10元,就会有一个房间空闲,如果游客居住房间,宾馆每间每天需花费20元的各种维护费用.房间定价多少时,宾馆利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,直线

(1)求证:直线过定点;

(2)求直线被圆所截得的弦长最短时的值;

(3)已知点,在直线MC上(C为圆心),存在定点N(异于点M),满足:对于圆C上任一点P,都有为一常数,试求所有满足条件的点N的坐标及该常数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是定义在上的奇函数,记的导函数为,当时,满足.若使不等式 成立,则实数的最小值为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知奇函数

1)求b的值,并求出函数的定义域

2)若存在区间,使得时,的取值范围为,求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若,求a的取值范围;

(2) ,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在中,,分别为的中点,的中点, .将沿折起到的位置,使得平面平面的中点,如图2.

Ⅰ)求证: 平面

Ⅱ)求F到平面A1OB的距离.

    1 2

查看答案和解析>>

同步练习册答案