精英家教网 > 高中数学 > 题目详情

【题目】某公司为了确定下一年度投入某种产品的宣传费用,需了解年宣传费(单位:万元)对年销量(单位:吨)和年利润(单位:万元)的影响对近6年宣传费和年销量的数据做了初步统计,得到如下数据:

年份

2013

2014

2015

2016

2017

2018

年宣传费(万元)

38

48

58

68

78

88

年销售量(吨)

16.8

18.8

20.7

22.4

24.0

25.5

经电脑模拟,发现年宣传费(万元)与年销售量(吨)之间近似满足关系式,两边取对数,即,令,即对上述数据作了初步处理,得到相关的值如下表:

75.3

24.6

18.3

101.4

1)从表中所给出的6年年销售量数据中任选2年做年销售量的调研,求所选数据中至多有一年年销售量低于21吨的概率.

2)根据所给数据,求关于的回归方程;

3)若生产该产品的固定成本为200(万元),且每生产1(吨)产品的生产成本为20(万元)(总成本=固定成本+生产成本+年宣传费),销售收入为(万元),假定该产品产销平衡(即生产的产品都能卖掉),2019年该公司计划投入108万元宣传费,你认为该决策合理吗?请说明理由.(其中为自然对数的底数,

附:对于一组数据,其回归直线中的斜率和截距的最小二乘估计分别为

【答案】123)不合理,见解析

【解析】

1)由表中数据可知6年中有3年的年销量低于21吨,则至多有一年年销量低于21”的选法有种选法,从而可求其概率.
2)由题中数据得:,根据,先求出,由,从而得出,得出方程.
3)根据题意有公司的年利润为,求出2019年该公司利润的最大值,

(1)记事件A表示至多有一年年销量低于21,由表中数据可知6年中有3年的年销量低于21吨,故

(2)对两边取对数得,令,由题中数据得:

所以

,故所求回归方程为

(3)设该公司的年利润为,因为利润/span>=销售收入-总成本,所以由题意可知

时,利润取得最大值500万元,

所以当宣传费时,利润取得最大值.

2019年该公司计划投入108万元宣传费的决策不合理

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,直四棱柱的底面是菱形,分别是的中点.

1)证明:平面

2)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数有如下性质:如果常数,那么该函数在上是减函数,在上是增函数.

1)已知,利用上述性质,求函数的单调区间和值域;

2)对于(1)中的函数和函数,若对任意,总存在,使得成立,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大学为了解学生对学校食堂服务的满意度,随机调查了50名男生和50名女生,每位学生对食堂的服务给出满意或不满意的评价,得到如图所示的列联表.经计算的观测值,则可以推断出(

满意

不满意

30

20

40

10

0.100

0.050

0.010

2.706

3.841

6.635

A.该学校男生对食堂服务满意的概率的估计值为

B.调研结果显示,该学校男生比女生对食堂服务更满意

C.有95%的把握认为男、女生对该食堂服务的评价有差异

D.有99%的把握认为男、女生对该食堂服务的评价有差异

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂在两个车间内选取了12个产品,它们的某项指标分布数据的茎叶图如图所示,该项指标不超过19的为合格产品.

(1)从选取的产品中在两个车间分别随机抽取2个产品,求两车间都至少抽到一个合格产品的概率;

(2)若从车间选取的产品中随机抽取2个产品,用表示车间内产品的个数,求的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四面体ABCD中,△ABC是正三角形,AD=CD

(1)证明:ACBD

(2)已知△ACD是直角三角形,AB=BD.若E为棱BD上与D不重合的点,且AEEC,求四面体ABCE与四面体ACDE的体积比.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四面体ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=CBDAB=BD

1)证明:平面ACD⊥平面ABC

2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角DAEC的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】每年9月第三个公休日是全国科普日.某校为迎接2019年全国科普日,组织了科普知识竞答活动,要求每位参赛选手从4生态环保题2智慧生活题中任选3道作答(每道题被选中的概率相等),设随机变量ξ表示某选手所选3道题中“智慧生活题”的个数.

(Ⅰ)求该选手恰好选中一道智慧生活题的概率;

(Ⅱ)求随机变量ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,求函数的单调区间;

2)当时,证明: (其中e为自然对数的底数).

查看答案和解析>>

同步练习册答案