精英家教网 > 高中数学 > 题目详情
已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)
的图象过点P(
π
12
,0)
,且图象上与点P最近的一个最低点是Q(-
π
6
,-2)

(Ⅰ)求f(x)的解析式;
(Ⅱ)若f(α+
π
12
)=
3
8
,且α为第三象限的角,求sinα+cosα的值;
(Ⅲ)若y=f(x)+m在区间[0,
π
2
]
上有零点,求m的取值范围.
分析:(Ⅰ)由周期求得ω=2,又A=2且过点P(
π
12
,0)
,可得sin(
π
12
×2+φ)=0
,结合|φ|<
π
2
,可得φ=-
π
6
,从而求得f(x)的解析式.
(Ⅱ)由f(α+
π
12
)=
3
8
2sin2α=
3
8
,再由α为第三象限的角,根据sinα+cosα=-
1+sin2α
,运算求得结果.
(Ⅲ)由x∈[0,
π
2
]
,利用正弦函数的定义域和值域求得-1≤2sin(2x-
π
6
)≤2
.由y=f(x)+m在区间[0,
π
2
]
上有零点,可得函数f(x)的图象和直线y=m有交点,由此可得m的取值范围.
解答:解:(Ⅰ)由已知条件可得:
T
4
=
π
12
-(-
π
6
)=
π
4
,故T=π,即
ω
=π,解得ω=2.(1分)
又A=2且过点P(
π
12
,0)
,∴sin(
π
12
×2+φ)=0
,结合|φ|<
π
2
,可得φ=-
π
6
,(2分)
∴f(x)=2sin(2x-
π
6
)
.(4分)
(Ⅱ)由f(α+
π
12
)=
3
8
得  2sin2α=
3
8
,(6分)∵α为第三象限的角,∴sinα+cosα=-
1+sin2α
=-
19
4

(Ⅲ)∵x∈[0,
π
2
]
,∴-
π
6
≤2x-
π
6
6
,∴-1≤2sin(2x-
π
6
)≤2
.(10分)
若y=f(x)+m在区间[0,
π
2
]
上有零点,则函数f(x)的图象和直线y=-m有交点.
故-1≤-m≤2,解得-2≤m≤1 即m的取值范围是[-2,1].(12分)
点评:本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,函数的零点与方程的根的关系,体现了转化的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=a-
12x+1

(1)求证:不论a为何实数f(x)总是为增函数;
(2)确定a的值,使f(x)为奇函数;
(3)当f(x)为奇函数时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)
a-x  ,x≤0
1  ,0<x≤3
(x-5)2-a,x>3
(a>0且a≠1)图象经过点Q(8,6).
(1)求a的值,并在直线坐标系中画出函数f(x)的大致图象;
(2)求函数f(t)-9的零点;
(3)设q(t)=f(t+1)-f(t)(t∈R),求函数q(t)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-
1
2x+1
,若f(x)为奇函数,则a=(  )
A、
1
2
B、2
C、
1
3
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
a(x-1)x2
,其中a>0.
(I)求函数f(x)的单调区间;
(II)若直线x-y-1=0是曲线y=f(x)的切线,求实数a的值;
(III)设g(x)=xlnx-x2f(x),求g(x)在区间[1,e]上的最小值.(其中e为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-
12x-1
,(a∈R)
(1)求f(x)的定义域;
(2)若f(x)为奇函数,求a的值;
(3)考察f(x)在定义域上单调性的情况,并证明你的结论.

查看答案和解析>>

同步练习册答案