精英家教网 > 高中数学 > 题目详情

已知函数f(x)=x3-2x2-4x-7.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)求a>2时,证明:对于任意的x>2且x≠a,恒有f(x)>f(a)+f'(a)(x-a);
(Ⅲ)设x0是函数y=f(x)的零点,实数α满足数学公式,试探究实数α、β、x0的大小关系.

解:(Ⅰ)由f'(x)=3x2-4x-4=(3x+2)(x-2)=0,得或2.
则x变化时,f′(x),f(x)的变化情况如下表:

则f(x)的单调递增区间为,(2,+∞),单调递减区间为
(Ⅱ)令g(x)=f(x)-f(a)-f'(a)(x-a),
则g'(x)=3x2-4x-4-(3a2-4a-4),记g'(x)=h(x),
因为当x>2时,h'(x)=6x-4>0,则h(x)在(2,+∞)单调递增,
又因为g'(a)=h(a)=0,
所以当2<x<a时,g'(x)<0,当x>a时,g'(x)>0,
所以g(x)在(2,a)递减,在(a,+∞)递增,又x≠a,
所以g(x)>g(a)=0成立,所以命题得证.
(Ⅲ)因为f(x)的单调递增区间为,(2,+∞),单调递减区间为,且
所以函数f(x)的零点x0只有一个,且x0>2,且对(-∞,x0)内的任意实数x,都有f(x)<0,
因为f(α)>0=f(x0),所以α>x0>2,所以f'(α)=(3α+2)(α-2)>0,
在(Ⅱ)的结论中,取a=α,x=x0
则有f(α)+f'(a)(x0-α)<f(x0)=0,①
,得f(α)+f'(α)(β-α)=0,②
构造函数F(x)=f(α)+f'(α)(x-α),
则由①得F(x0)<0,由②得F(β)=0,所以F(x0)<F(β),
因为f'(α)>0,所以F′(x)=f'(α)>0,所以F(x)=f(α)+f'(α)(x-α)为增函数,
所以x0<β,
因为F(α)=f(a)>0=F(β),所以β<α,
综上得x0<β<α.
分析:(Ⅰ)求导数f′(x),解不等式f′(x)>0,f′(x)<0即可;
(Ⅱ)令g(x)=f(x)-f(a)-f'(a)(x-a),利用导数证明gmin(x)>0即可;
(Ⅲ)由函数极值可判断零点x0的范围,再由f(α)>0可判断α与x0的大小,由,得f(α)+f'(α)(β-α)=0,构造函数F(x)=f(α)+f'(α)(x-α),据F(x)的单调性及F(x0)与F(β)的大小可判断βx0的大小,从而可以得到答案.
点评:本题考查利用导数研究函数的单调性、函数极值,考查学生综合运用所学知识分析问题解决问题的能力,综合性强,能力要求高,难度较大.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案