精英家教网 > 高中数学 > 题目详情
11.在平面直角坐标系xOy中,点P到两点(0,-$\sqrt{3}$),(0,$\sqrt{3}$)的距离之和等于4.设点P的轨迹为C,直线y=kx+1与曲线C交于A,B两点.
(1)写出曲线C的方程;
(2)是否存在k的值,使以AB为直径的圆过原点O?若存在,求出k的值,若不存在,请说明理由.

分析 (1)直接利用椭圆的定义求得椭圆的方程;
(2)联立直线好椭圆方程,化为关于x的一元二次方程,得到根与系数的关系,由AB为直径的圆过原点O,可得$\overrightarrow{OA}$⊥$\overrightarrow{OB}$,得x1x2+y1y2=0,由此列式求得k的值.

解答 解:(1)设P(x,y),由椭圆定义可知,点P的轨迹C是以(0,-$\sqrt{3}$),(0,$\sqrt{3}$)为焦点,长半轴为a=2的椭圆,
它的短半轴b=$\sqrt{4-3}$=1,
故曲线C的方程为x2+$\frac{{y}^{2}}{4}$=1.
(2)直线y=kx+1代入曲线C,消去y并整理得(k2+4)x2+2kx-3=0,
△=(2k)2-4×(k2+4)×(-3)=16(k2+3)>0,
设A(x1,y1),B(x2,y2),
则x1+x2=-$\frac{2k}{{k}^{2}+4}$,x1x2=-$\frac{3}{{k}^{2}+4}$.
由AB为直径的圆过原点O,可得$\overrightarrow{OA}$⊥$\overrightarrow{OB}$,得x1x2+y1y2=0,
而y1y2=(kx1+1)(kx2+1)=k2x1x2+k(x1+x2)+1,
于是x1x2+y1y2=$\frac{-4{k}^{2}+1}{{k}^{2}+4}$=0,得k=±$\frac{1}{2}$.满足题意.

点评 本题考查了椭圆轨迹方程的求法,考查了直线与圆锥曲线关系的应用,涉及直线与圆锥曲线的关系问题,常用转化为方程的根与系数关系解题,是压轴题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.化简求值:
(1)1.10+$\root{3}{512}$-0.5-2+lg25+2lg2
(2)已知2x=72y=A,且$\frac{1}{x}$+$\frac{1}{y}$=2,求A的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列各对向量中,互相不垂直的是(  )
A.$\overrightarrow{a}$=(3,4),$\overrightarrow{b}$=(4,3)B.$\overrightarrow{a}$=(1,0),$\overrightarrow{b}$=(0,-2)C.$\overrightarrow{a}$=(-2,1),$\overrightarrow{b}$=(1,2)D.$\overrightarrow{a}$=(-$\frac{1}{2}$,$\frac{1}{2}$),$\overrightarrow{b}$=(1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在△ABC中,若$\frac{b}{c}=\frac{3}{5}$,则$\frac{sinB+2sinC}{sinC}$=$\frac{13}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知某曲线y=f(x)过点(0,0),且在点(x,y)处的切线斜率k=3x2+1,求该曲线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的两个焦点为F1,F2,点P在椭圆C上,且PF1⊥PF2,|PF1|=$\frac{4}{3}$,|PF2|=$\frac{14}{3}$.
(1)求椭圆的方程;    
(2)若直线l:y=kx+3与椭圆恒有不同交点A、B,且$\overrightarrow{OA}$•$\overrightarrow{OB}$>1(O为坐标原点),求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.一个四面体的顶点在空间直角坐标系O-xyz的坐标分别是(0,1,1),(1,2,1),(1,1,2),(0,3,3),画出该四面体的正视图时,以yOz平面为投影面,则得到的正视图的面积是2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知tan(α-$\frac{β}{2}$)=$\frac{1}{2}$,tan(β-$\frac{α}{2}$)=-$\frac{1}{3}$,则tan$\frac{α+β}{2}$=$\frac{1}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知Rt△ABC,∠C=90°,设AC=m,BC=n
(1)若D为斜边AB的中点,求证:CD=$\frac{1}{2}$AB;
(2)若E为CD的中点,连接AE并延长交BC于F,求AF的长度(用m,n表示)

查看答案和解析>>

同步练习册答案