【题目】某书店销售刚刚上市的某知名品牌的高三数学单元卷,按事先拟定的价格进行5天试销,每种单价试销1天,得到如表数据:
单价x(元) | 18 | 19 | 20 | 21 | 22 |
销量y(册) | 61 | 56 | 50 | 48 | 45 |
(1)求试销5天的销量的方差和y对x的回归直线方程;
(2)预计今后的销售中,销量与单价服从(1)中的回归方程,已知每册单元卷的成本是14元,
为了获得最大利润,该单元卷的单价应定为多少元?
科目:高中数学 来源: 题型:
【题目】已知数列满足, ,其中.
(1)设,求证:数列是等差数列,并求出的通项公式;
(2)设,数列的前项和为,是否存在正整数,使得对于恒成立,若存在,求出的最小值,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近期中央电视台播出的《中国诗词大会》火遍全国,下面是组委会在选拔赛时随机抽取的100名选手的成绩,按成绩分组,得到的频率分布表如下所示:
组号 | 分组 | 频数 | 频率 |
第1组 | |||
第2组 | ① | ||
第3组 | 20 | ② | |
第4组 | 20 | ||
第5组 | 10 | ||
合计 | 100> |
(1)请先求出频率分布表中①、②位置的相应数据,再完成频率分布直方图(用阴影表示);
(2)为了能选拔出最优秀的选手,组委会决定在笔试成绩高的第3、4、5组中用分层抽样抽取5名选手进入第二轮面试,求第3、4、5组每组各抽取多少名选手进入第二轮面试;
(3)在(2)的前提下,组委会决定在5名选手中随机抽取2名选手接受考官进行面试,求:第4组至少有一名选手被考官面试的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=Asin(x+φ)(A>0,0<φ<π),x∈R的最大值是1,其图象经过点 .
(1)求f(x)的解析式;
(2)已知 ,且 , ,求f(α﹣β)的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知定点A(-4,0)、C(4,0),半径为r的圆M的圆心M在线段AC的垂直平分线上,且在y轴右侧,圆M被y轴截得的弦长为 r.
(1)求圆M的方程;(2)当r变化时,是否存在定直线l与动圆M均相切?如果存在,求出定直线l的方程;如果不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义平面向量之间的一种运算“⊙”如下:对任意的 ,令 ⊙ =mq-np,下面说法错误的是( )
A.若 与 共线,则 ⊙ =0
B. ⊙ = ⊙
C.对任意的λ∈R,有 ⊙ = ⊙ )
D.( ⊙ )2+( )2=| |2| |2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲,乙两台机床同时生产一种零件,其质量按测试指标划分:指标大于或等于100为优品,大于等于90且小于100为合格品,小于90为次品,现随机抽取这两台车床生产的零件各100件进行检测,检测结果统计如下:
测试指标 | |||||
机床甲 | 8 | 12 | 40 | 32 | 8 |
机床乙 | 7 | 18 | 40 | 29 | 6 |
(1)试分别估计甲机床、乙机床生产的零件为优品的概率;
(2)甲机床生产一件零件,若是优品可盈利160元,合格品可盈利100元,次品则亏损20元;假设甲机床某天生产50件零件,请估计甲机床该天的日利润(单位:元);
(3)从甲、乙机床生产的零件指标在内的零件中,采用分层抽样的方法抽取5件,从这5件中任选2件进行质量分析,求这2件都是乙机床生产的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点是圆上的任意一点,点为圆的圆心,点与点关于平面直角系的坐标原点对称,线段的垂直平分线与线段交于点.
(1)求动点的轨迹的方程;
(2)若轨迹与轴正半轴交于点,直线交轨迹于两点,求面积的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com