精英家教网 > 高中数学 > 题目详情

【题目】某书店销售刚刚上市的某知名品牌的高三数学单元卷,按事先拟定的价格进行5天试销,每种单价试销1天,得到如表数据:

单价x(元)

18

19

20

21

22

销量y(册)

61

56

50

48

45

(1)求试销5天的销量的方差和yx的回归直线方程;

(2)预计今后的销售中,销量与单价服从(1)中的回归方程,已知每册单元卷的成本是14元,

为了获得最大利润,该单元卷的单价应定为多少元?

【答案】(1) ;(2) 单价应定为23.5元时,可获得最大利润.

【解析】试题分析:(1)由回归直线方程的公式求得 ,再代入公式求得a,最终得到表达式;(2)先计算出利润的表达式z=(x﹣14)y=﹣4x2+188x﹣1848,再对这个二次函数求得最值即可。

(1)

根据公式得到

所以y对x的回归直线方程为:

(2)获得的利润z=(x﹣14)y=﹣4x2+188x﹣1848,

∵二次函数z=﹣4x2+188x﹣1848的开口朝下,∴当 ,z取最大值,

∴当单价应定为23.5元时,可获得最大利润.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列满足 ,其中.

(1)设,求证:数列是等差数列,并求出的通项公式;

(2)设,数列的前项和为,是否存在正整数,使得对于恒成立,若存在,求出的最小值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近期中央电视台播出的《中国诗词大会》火遍全国,下面是组委会在选拔赛时随机抽取的100名选手的成绩,按成绩分组,得到的频率分布表如下所示:

组号

分组

频数

频率

第1组

第2组

第3组

20

第4组

20

第5组

10

合计

100

(1)请先求出频率分布表中①、②位置的相应数据,再完成频率分布直方图(用阴影表示);

(2)为了能选拔出最优秀的选手,组委会决定在笔试成绩高的第3、4、5组中用分层抽样抽取5名选手进入第二轮面试,求第3、4、5组每组各抽取多少名选手进入第二轮面试;

(3)在(2)的前提下,组委会决定在5名选手中随机抽取2名选手接受考官进行面试,求:第4组至少有一名选手被考官面试的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=Asin(x+φ)(A>0,0<φ<π),x∈R的最大值是1,其图象经过点
(1)求f(x)的解析式;
(2)已知 ,且 ,求f(α﹣β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知定点A(-4,0)、C(4,0),半径为r的圆M的圆心M在线段AC的垂直平分线上,且在y轴右侧,圆My轴截得的弦长为 r.

(1)求圆M的方程;(2)r变化时,是否存在定直线l与动圆M均相切?如果存在,求出定直线l的方程;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方形中, 的中点为点 的中点为点,沿向上折起得到,使得面,此时点位于点处.

(Ⅰ)证明:

(Ⅱ)求面与面所成二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义平面向量之间的一种运算“⊙”如下:对任意的 ,令 =mq-np,下面说法错误的是(
A.若 共线,则 =0
B. =
C.对任意的λ∈R,有 =
D.( 2+( 2=| |2| |2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲,乙两台机床同时生产一种零件,其质量按测试指标划分:指标大于或等于100为优品,大于等于90且小于100为合格品,小于90为次品,现随机抽取这两台车床生产的零件各100件进行检测,检测结果统计如下:

测试指标

机床甲

8

12

40

32

8

机床乙

7

18

40

29

6

(1)试分别估计甲机床、乙机床生产的零件为优品的概率;

(2)甲机床生产一件零件,若是优品可盈利160元,合格品可盈利100元,次品则亏损20元;假设甲机床某天生产50件零件,请估计甲机床该天的日利润(单位:元);

(3)从甲、乙机床生产的零件指标在内的零件中,采用分层抽样的方法抽取5件,从这5件中任选2件进行质量分析,求这2件都是乙机床生产的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点是圆上的任意一点,点为圆的圆心,点与点关于平面直角系的坐标原点对称,线段的垂直平分线与线段交于点.

(1)求动点的轨迹的方程;

(2)若轨迹轴正半轴交于点,直线交轨迹两点,求面积的取值范围.

查看答案和解析>>

同步练习册答案