精英家教网 > 高中数学 > 题目详情
(2008•宝山区一模)如图,在平面斜坐标系中xoy中,∠xoy=60°,平面上任一点P的斜坐标定义如下:若
OP
=x
e1
+y
e2
,其中
e1
e2
分别为与x轴,y轴同方向的单位向量,则点P的斜坐标为(x,y).那么,以O为圆心,2为半径的圆有斜坐标系xoy中的方程是
x2+xy+y2-4=0
x2+xy+y2-4=0
分析:由题意,可设M是此圆上的任意一点,则有|OM|=2,令点M的斜坐标为(x,y),可得|OM|=|x
e1
+y
e2
|两边平方,根据斜坐标系的定义进行恒等变形,整理出圆的斜坐标系下的方程即可
解答:解:设圆上动点M的斜坐标为(x,y),则|OM|=|x
e1
+y
e2
|=2,
∴x2+2xy
e1
e2
+y2=4,
∴x2+y2+xy=4,
故答案为x2+xy+y2-4=0.
点评:本题考查坐标系的选择及意义,这是一个新定义的题,理解定义,根据圆的几何特征建立起等式是解题的关键,
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2008•宝山区一模)已知直线l与抛物线y2=4x相交于A(x1,y1),B(x2,y2)两个不同的点,那么“直线l经过抛物线y2=4x的焦点”是“x1x2=1”的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•宝山区一模)如图,已知正△A1B1C1的边长是1,面积是P1,取△A1B1C1各边的中点A2,B2,C2,△A2B2C2的面积为P2,再取△A2B2C2各边的中点A3,B3,C3,△A3B3C3的面积为P3,依此类推.记Sn=P1+P2+…+Pn,则
lim
n→∞
Sn
=
3
3
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•宝山区一模)如果执行下面的程序框图,那么输出的S=
10000
10000

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•宝山区一模)函数是这样定义的:对于任意整数m,当实数x满足不等式|x-m|<
1
2
时,有f(x)=m.
(1)求函数的定义域D,并画出它在x∈D∩[0,4]上的图象;
(2)若数列an=2+10•(
2
5
)n
,记Sn=f(a1)+f(a2)+f(a3)+…+f(an),求Sn
(3)若等比数列{bn}的首项是b1=1,公比为q(q>0),又f(b1)+f(b2)+f(b3)=4,求公比q的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•宝山区一模)过点A(2,-3),且法向量是
m
=(4,-3)
的直线的点方向式方程是
x-2
3
=
y+3
4
x-2
3
=
y+3
4

查看答案和解析>>

同步练习册答案