(13分)(2011•天津)如图,在四棱锥P﹣ABCD中,底面ABCD为平行四边形,∠ADC=45°,AD=AC=1,O为AC中点,PO⊥平面ABCD,PO=2,M为PD中点.
(Ⅰ)证明:PB∥平面ACM;
(Ⅱ)证明:AD⊥平面PAC;
(Ⅲ)求直线AM与平面ABCD所成角的正切值.
(Ⅰ)(Ⅱ)见解析(Ⅲ)
解析试题分析:(I)由O为AC中点,M为PD中点.结合平行四边形的对角线性质,考虑连接BD,MO,则有PB∥MO,从而可证
(II)由∠ADC=45°,且AD=AC=1,易得AD⊥AC,PO⊥AD,根据线面垂直的判定定理可证
(III)取DO中点N,由PO⊥平面ABCD,可得MN⊥平面ABCD,从而可得∠MAN是直线AM与平面ABCD所成的角.在Rt△ANM中求解即可
解:(I)证明:连接BD,MO
在平行四边形ABCD中,因为O为AC的中点,
所以O为BD的中点,又M为PD的中点,所以PB∥MO
因为PB?平面ACM,MO?平面ACM
所以PB∥平面ACM
(II)证明:因为∠ADC=45°,且AD=AC=1,所以∠DAC=90°,即AD⊥AC
又PO⊥平面ABCD,AD?平面ABCD,所以PO⊥AD,AC∩PO=O,AD⊥平面PAC
(III)解:取DO中点N,连接MN,AN
因为M为PD的中点,所以MN∥PO,且MN=PO=1,由PO⊥平面ABCD,得MN⊥平面ABCD
所以∠MAN是直线AM与平面ABCD所成的角.
在Rt△DAO中,,所以,
∴,
在Rt△ANM中,==
即直线AM与平面ABCD所成的正切值为
点评:本题主要考查直线与平面平行、直线与平面垂直、直线与平面所成的角等基础知识,考查空间想象能力、运算能力、推理论证能力.
科目:高中数学 来源: 题型:解答题
已知△ABC是边长为l的等边三角形,D、E分别是AB、AC边上的点,AD = AE,F是BC的中点,AF与DE交于点G,将△ABF沿AF折起,得到三棱锥A-BCF,其中.
(1)证明:DE∥平面BCF;
(2)证明:CF⊥平面ABF;
(3)当时,求三棱锥F-DEG的体积V.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在如图所示的几何体中,正方形ABCD和矩形ABEF所在的平面互相垂直,M为AF的中点,BN⊥CE.
(1)求证:CF∥平面MBD;
(2)求证:CF⊥平面BDN.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和两平面的交线平行.
请对上面定理加以证明,并说出定理的名称及作用.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com