.已知椭圆C:+=1(a>b>0)的长轴长为4.
(1)若以原点为圆心、椭圆短半轴为半径的圆与直线y=x+2相切,求椭圆C的焦点坐标;
(2)若点P是椭圆C上的任意一点,过焦点的直线l与椭圆相交于M,N两点,记直线PM,PN的斜率分别为kPM、kPN,当kPM·kPN=-时,求椭圆的方程.
科目:高中数学 来源: 题型:
(08年泉州一中适应性练习文)(12分)已知椭圆C:+=1(a>b>0)的离心率为,过右焦点F且斜率为1的直线交椭圆C于A,B两点,N为弦AB的中点。
(1)求直线ON(O为坐标原点)的斜率KON ;
(2)对于椭圆C上任意一点M ,试证:总存在角(∈R)使等式:=cos+sin成立。
查看答案和解析>>
科目:高中数学 来源: 题型:
(09年湖北重点中学4月月考理)(13分
已知椭圆C:+=1(a>b>0)的离心率为,过右焦点F且斜率为1的直线交椭圆C于A,B两点,N为弦AB的
(1)求直线ON(O为坐标原点)的斜率KON ;
1) (2)对于椭圆C上任意一点M ,试证:总存在角(∈R)使等式:=cos+sin成立
查看答案和解析>>
科目:高中数学 来源: 题型:
已知椭圆C:+=1(a>b>0)的离心率为,过右焦点F且斜率为1的直线交椭圆C于A,B两点,N为弦AB的中点。
(1)求直线ON(O为坐标原点)的斜率KON ;
(2)对于椭圆C上任意一点M ,试证:总存在角(∈R)使等式:=cos+sin成立。w.w.w.k.s.5.u.c.o.m
查看答案和解析>>
科目:高中数学 来源: 题型:
已知椭圆C:+=1(a>b>0)的离心率为,过右焦点F且斜率为1的直线交椭圆C于A,B两点,N为弦AB的中点。
(1)求直线ON(O为坐标原点)的斜率KON ;
(2)对于椭圆C上任意一点M ,试证:总存在角(∈R)使等式:=cos+sin成立。
查看答案和解析>>
科目:高中数学 来源:2014届湖北省武汉市高三9月调研测试理科数学试卷(解析版) 题型:解答题
已知椭圆C:+=1(a>b>0)的离心率为,过右焦点F的直线l与C相交于A、B两点,当l的斜率为1时,坐标原点O到l的距离为.
(Ⅰ)求a,b的值;
(Ⅱ)C上是否存在点P,使得当l绕F转到某一位置时,有=+成立?若存在,求出所有的P的坐标与l的方程;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com