精英家教网 > 高中数学 > 题目详情

【题目】某周末,郑州方特梦幻王国汇聚了八方来客.面对该园区内相邻的两个主题公园“千古蝶恋”和“西游传说”,成年人和未成年人选择游玩的意向会有所不同.某统计机构对园区内的100位游客(这些游客只在两个主题公园中二选一)进行了问卷调查.调查结果显示,在被调查的50位成年人中,只有10人选择“西游传说”,而选择“西游传说”的未成年人有20.

1)根据题意,请将下面的列联表填写完整;

选择“西游传说”

选择“千古蝶恋”

总计

成年人

未成年人

总计

2)根据列联表的数据,判断是否有的把握认为选择哪个主题公园与年龄有关.

附参考公式与表:.

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

【答案】(1)见解析(2)没有的把握认为选择哪个主题公园与年龄有关

【解析】

1)根据题干可直接填表;(2)用公式求出,进而判断与年龄有无关系。

解:(1)根据题目中的数据,列出列联表如下:

选择“西游传说”

选择“千古蝶恋”

总计

成年人

10

40

50

未成年人

20

30

50

总计

30

70

100

2的观测值.

因为,所以没有的把握认为选择哪个主题公园与年龄有关.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】1是直角梯形,点,以为折痕将折起,使点到达的位置,且,如图2.

1)证明:平面平面

2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】微信是现代生活信息交流的重要工具,随机对使用微信的人进行统计,得到如下数据统计表,每天使用微信时间在两小时以上的人被定义为微信依赖,不超过两小时的人被定义为非微信依赖,已知非微信依赖微信依赖人数比恰为.

使用微信时间(单位:小时)

频数

频率

5

0.05

15

0.15

15

0.15

30

0.30

合计

100

1.00

1)确定的值;

2)为进一步了解使用微信对自己的日常工作和生活是否有影响,从微信依赖非微信依赖人中用分层抽样的方法确定人,若需从这人中随机选取人进行问卷调查,设选取的人中微信依赖的人数为,求的分布列;

3)求选取的人中微信依赖至少人的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为给定的大于2的正整数,集合,已知数列,…,满足条件:

①当时,

②当时,.

如果对于,有,则称为数列的一个逆序对.记数列的所有逆序对的个数为.

1)若,写出所有可能的数列

2)若,求数列的个数;

3)对于满足条件的一切数列,求所有的算术平均值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】小明下班回家途经3个有红绿灯的路口,交通法规定:若在路口遇到红灯,需停车等待;若在路口没遇到红灯,则直接通过.经长期观察发现:他在第一个路口遇到红灯的概率为,在第二、第三个道口遇到红灯的概率依次减小,在三个道口都没遇到红灯的概率为,在三个道口都遇到红灯的概率为,且他在各路口是否遇到红灯相互独立.

1)求小明下班回家途中至少有一个道口遇到红灯的概率;

2)求小明下班回家途中在第三个道口首次遇到红灯的概率;

3)记为小明下班回家途中遇到红灯的路口个数,求数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在数列中,已知().

1)证明数列是等比数列,并求出数列的通项公式;

2)若(为非零常数),问是否存在整数,使得对任意都有?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某投资公司在年年初准备将万元投资到“低碳”项目上,现有两个项目供选择:

项目一:新能源汽车.据市场调研,投资到该项目上,到年底可能获利,也可能亏损,且这两种情况发生的概率分别为

项目二:通信设备.据市场调研,投资到该项目上,到年底可能获利,可能损失,也可能不赔不赚,且这三种情况发生的概率分别为.

针对以上两个投资项目,请你为投资公司选择一个合理的项目,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》中有如下问题:今有蒲生一日,长三尺,莞生一日,长1尺.蒲生日自半,莞生日自倍.问几何日而长等?意思是:今有蒲第一天长高3尺,莞第一天长高1尺,以后蒲每天长高前一天的一半,莞每天长高前一天的2倍.若蒲、莞长度相等,则所需时间为()

(结果精确到0.1.参考数据:lg20.3010lg30.4771.)

A.2.6B.2.2C.2.4D.2.8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】树立和践行“绿水青山就是金山银山,坚持人与自然和谐共生”的理念越来越深入人心,已形成了全民自觉参与,造福百姓的良性循环.据此,某网站推出了关于生态文明建设进展情况的调查,调查数据表明,环境治理和保护问题仍是百姓最为关心的热点,参与调查者中关注此问题的约占.现从参与关注生态文明建设的人群中随机选出200人,并将这200人按年龄分组:第1组,第2组,第3组,第4组,第5组,得到的频率分布直方图如图所示.

(1)求出的值;

(2)现在要从年龄较小的第1,2组中用分层抽样的方法抽取5人,再从这5人中随机抽取3人进行问卷调查,求第2组恰好抽到2人的概率.

查看答案和解析>>

同步练习册答案