精英家教网 > 高中数学 > 题目详情

如右图,△ABC中,||=3,||=1,  D是BC边中垂线上任意一点,则·()的值是(    )

   A.1      B.   C.2      D.4

 

 

 

【答案】

D

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,△ABC中,BC=2
3
AB
AC
=4,
AC
CB
=2
,双曲线M是以B、C为焦点且过A点.
(Ⅰ)建立适当的坐标系,求双曲线M的方程;
(Ⅱ)设过点E(1,0)的直线l分别与双曲线M的左、右支交于
F、G两点,直线l的斜率为k,求k的取值范围.;
(Ⅲ)对于(Ⅱ)中的直线l,是否存在k≠0使|OF|=|OG|若有求出k的值,若没有说明理由.(O为原点)

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在三棱锥S-ABC中,侧面SAB⊥底面ABC,且∠ASB=∠ABC=90°,AS=SB=2,AC=2
3


(Ⅰ)求证SA⊥SC;
(Ⅱ)在平面几何中,推导三角形内切圆的半径公式r=
2S
l
(其中l是三角形的周长,S是三角形的面积),常用如下方法(如右图):
①以内切圆的圆心O为顶点,将三角形ABC分割成三个小三角形:△OAB,△OAC,△OB精英家教网C.
②设△ABC三边长分别为a,b,c.由S△ABC=S△OBC+S△OAC+S△OAB
S=
1
2
ar+
1
2
br+
1
2
cr
=
1
2
lr
,则r=
2S
l

类比上述方法,请给出四面体内切球半径的计算公式(不要求说明类比过程),并利用该公式求出三棱锥S-ABC内切球的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:

如右图,在正三棱锥S-ABC中,M,N分别为棱SC,BC的中点,AM⊥MN,若SA=
3
,则正三棱锥S-ABC的外接球的体积为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

如左图所示,直角梯形ABCD中,AD∥BC,∠ABC=90°,E、F分别是边AD和BC上的点,且EF∥AB,AD=2AE=2AB=4FC=4,将四边形EFCD沿EF折起使AE=AD,如右图所示.
(1)求证:AF∥平面CBD;
(2)求三棱锥C-ABF的体积.

查看答案和解析>>

同步练习册答案