精英家教网 > 高中数学 > 题目详情
4.不等式|x-1|-|x+1|≥a能成立,则a的取值范围为a≤2.

分析 由题意知这是一个存在性的问题,须求出不等式左边的最大值,令其大于等于a,即可解出实数a的取值范围

解答 解:由题意借助数轴,|x-1|-|x+1|∈[-2,2]
∵不等式|x-1|-|x+1|≥a能成立,
∴a≤2
故答案为a≤2.

点评 本题考查绝对值不等式,求解本题的关键是正确理解题意,区分存在问题与恒成立问题的区别.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.有编号为D1,D2,…,D10的10个零件,测量其直径(单位:mm),得到下面数据:
其中直径在区间(148,152]内的零件为一等品.
编号D1D2D3D4D5D6D7D8D9D10
直径151148149151149152147146153148
(1)从上述10个零件中,随机抽取2个,求这2个零件均为一等品的概率;
(2)从一等品零件中,随机抽取2个.用ξ表示这2个零件直径之差的绝对值,求随机变量ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设命题p:实数a满足不等式3a≤9,命题q:x2+3(3-a)x+9≥0的解集为R.已知“p∧q”为真命题,并记为条件r,且条件t:实数a满足a<m或$a>m+\frac{1}{2}$.
(1)求条件r的等价条件(用a的取值范围表示);
(2)若r是¬t的必要不充分条件,求正整数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数y=x2cosx的导数为(  )
A.y′=x2cosx-2xsin xB.y′=2xcos x+x2sin x
C.y′=2xcosx-x2sinxD.y′=xcosx-x2sin x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=$\frac{3x}{x+3}$,数列{xn}的通项由xn=f(xn-1)(n≥2且x∈N*)确定.
(1)求证:数列($\frac{1}{{x}_{n}}$)是等差数列;
(2)当x1=$\frac{1}{2}$时,求x2017

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若函数f(x)=x2+bx+c的图象的对称轴为x=2,则函数f(x)的导函数f'(x)的图象不经过(  )
A.第一象限B.第二象限C.第三象限D.第三象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列关于幂函数y=xα(α∈Q)的论述中,正确的是(  )
A.当α=0时,幂函数的图象是一条直线
B.幂函数的图象都经过(0,0)和(1,1)两个点
C.若函数f(x)为奇函数,则f(x)在定义域内是增函数
D.幂函数f(x)的图象不可能在第四象限内

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知复数z=1+i,则 $\frac{{{z^2}-2z}}{1-z}$=(  )
A.2iB.-2iC.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某家公司每月生产两种布料A和B,所有原料是三种不同颜色的羊毛.下表给出了生产每匹每种布料所需的羊毛量,以及可供使用的每种颜色的羊毛的总量.
羊毛颜色每匹需要/kg供应量/kg
布料A布料B
331050
绿421200
261800
已知生产每匹布料A、B的利润分别为60元、40元.分别用x、y表示每月生产布料A、B的匹数.
(Ⅰ)用x、y列出满足生产条件的数学关系式,并画出相应的平面区域;
(Ⅱ)如何安排生产才能使得利润最大?并求出最大的利润.

查看答案和解析>>

同步练习册答案