精英家教网 > 高中数学 > 题目详情
19.已知函数f(x)在(1,+∞)上递减,且它的图象关于直线x=1对称,求不等式f(x+1)<f(2x)的解集.

分析 由条件便知f(x)图象上的点离对称轴越远,而对应的函数值越小,从而由原不等式可得到|x|<|2x-1|,从而解该不等式即可得出原不等式的解集.

解答 解:根据已知条件知f(x)图象上的点离对称轴x=1越远该点的纵坐标越小;
∴由f(x+1)<f(2x)得:|x+1-1|>|2x-1|;
∴x2>(2x-1)2
解得$\frac{1}{3}<x<1$;
∴原不等式的解集为$(\frac{1}{3},1)$.

点评 考查函数图象关于一直线对称的概念,根据条件可画出f(x)的草图,通过两边平方去绝对值号的方法,以及解一元二次不等式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.如图,在△ABC中,点D为边AC的中点,3AE=AB,BD=CE交于点P,设$\overrightarrow{a}$=$\overrightarrow{AB}$,$\overrightarrow{b}$=$\overrightarrow{AC}$
(1)试用$\overrightarrow{a}$,$\overrightarrow{b}$表示$\overrightarrow{CE}$;
(2)试用$\overrightarrow{a}$,$\overrightarrow{b}$表示$\overrightarrow{AP}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.从含有甲乙的6名短跑运动员中任选4人参加4*100米接力,问其中甲不能跑第一棒,且乙不能跑第四棒的概率是(  )
A.$\frac{7}{40}$B.$\frac{7}{30}$C.$\frac{7}{20}$D.$\frac{7}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在数列{an}中,已知a1=a(a>2),且an+1=$\frac{{a}_{n}^{2}}{2({a}_{n}-1)}$(n∈N*).
(1)用数学归纳法证明:an>2(n∈N*);
(2)求证an+1<an(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=$\sqrt{3}$tan$\frac{πx}{ω}$(ω>0)
(1)当ω=4时,求f(x)的最小正周期及单调区间;
(2)若|f(x)|≤3在x∈[-$\frac{π}{3},\frac{π}{4}$]上恒成立,求ω的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.经过点P(2,-3)作圆x2+y2=20的弦AB,且使得P平分AB,则弦AB所在直线的方程是2x-3y-13=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.现有红、黄、蓝、绿彩色小球各1个以及4个完全相同的白球,将它们排成一排,要求任何两个彩色小球之间至少要有一个白球,那么不同的排法数为(  )种.
A.2880B.120C.48D.96

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知集合A={x|x2-2x-3≤0},B={x|x2-2mx+m2-9≤0},m∈R
(1)若m=3,求A∩B;
(2)已知命题p:x∈A,命题q:x∈B,若q是p的必要条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知,如图,AB是eO的直径,AC切⊙O于点A,AC=AB,CO交⊙O于点P,CO的延长线交⊙O于点F,BP的延长线交AC于点E
(1)求证:FA∥BE
(2)求证:$\frac{AP}{PC}$=$\frac{FA}{AB}$.

查看答案和解析>>

同步练习册答案